LIGHT FLICKER & DRIVERS

Light Flicker from LED Lighting Systems -An Urgent Problem to Solve

Ficker is the modulation of a lamp's light output caused by fuctuations of the mains valings supply. Recent research has shown that fluctuations of short wavelength emissions are perceived to a higher section and light ficker may have a huge influence on the well-being of end users. **PoC Gaccege Zosi** Haad of Light & Matter Peeserch Group at the LAPLACE Université do Toutous presents and discusses the influence of diver topologies, research results, metrics and standards.

The article about flicker issues and drivers by Prof. Georges Zissis was the object of some discussions. Dr. Walter Werner had a very interesting point of view

References:

- Wilkins A.J., I.M. Nimmo-Smith, A. Slater and L. Bedocs: Fluorescent lighting, headaches and eye-strain, Lighting Research and Technology, 21(1), 11-18, 1989
- Pawan Sinha: Es werde Licht, Spektrum der Wissenschaft 18.7.2014 (partly based on Held, R. et al: The Newly Sighted Fail to Match Seen with Felt, Nature Neuroscience 14, p 551-553, 2011)
- [3] Lindner, Heinrich: Untersuchungen zur zeitlichen Gleichmässigkeit der Beleuchtung unter besonderer Berücksichtigung von Lichtwelligkeit, Flimmerempfindlichkeit und Sehbeschwerden bei Beleuchtung mit Gasentladungslampen, 1989, Thesis, TU Ilmenau, Germany.

THERE IS MORE TO FLICKER THAN VISIBLE PERCEPTION

by Dr. Walter Werner, Werner Consulting

In his excellent article in the Jan/Feb 2016 LpR 53 issue, Georges Zisses showed that flicker needs to be limited according to existing standards to stay well out of the perceivable range.

The main research and arguments, however, are focused on visible perception. This is sufficient if we assume that what cannot be perceived does not cause any harm. But this has not been proven, and not much research is available about long-term effects of unperceivable flicker. Very likely, science and regulations need to rethink this type of assumption; just look at x-rays and radioactivity.

Wilkins et al. investigated medium to longer-term effects in the late 1980's (as part of the "sick building" syndrome research). The research focused on 100 Hz modulation [1]. He showed that a switch from a longer exposition (multiple months) with substantially modulated light (60%) to low modulated light (6%) reduces headaches and eyestrain within a few weeks. These results are statistically significant. Most of the lighting industry ignored the results because the opposite effect (increased eyestrain and headaches) could not be shown within the four weeks of exposition that the research campaign allowed for.

Research on blind people that regained their sight as adults (Project Prakash [2]), showed that the visual apparatus and object recognition ability adapt to a mostly normal view after a while in adults but does not gain some of the more advanced abilities. This could point to the fact that the complex analysis ability is trained and formed during childhood.

There is also evidence that there is some influence up to about 400 Hz, and transitional effects of flicker have been claimed to be detectable up to 800 Hz. While the latter observation has been researched with moving sources and could well be an artifact caused by the interference of the moving sources with some eye-movements, H. Lindner's research [3] proved a reduction of the ability to resolve very fine structures up to a modulation frequency of 400 Hz. This seems to be very high, given the bio-chemical nature of the sensors and the relatively low fusion frequency of our visual system. One quite obvious reason for this could be that the neural network can use the fast signals to enhance the quality of the received visual signal.

What does this tell us about flicker with frequencies below 400 Hz, and what would be the logical consequences?

- Short term exposure to higher frequency flicker seems to be no trouble, as long as no advanced visual tasks need to be performed
- Longer term exposure to higher frequency flicker should be avoided, as research cannot give evidence about the thresholds to maintain. The existing research is poor but suggests strongly that there are negative effects like stress or wear-out to the visual apparatus
- Flicker should be avoided wherever (younger) children stay longer, to make sure the possibility of interference with their later visual abilities is minimized

As a clear conclusion, we can say that there is enough evidence that flicker up to 400Hz is not harmless with longer term exposition and responsible manufacturers should keep out of this range to keep lighting that is intended to be used in offices, work areas, baby and children's' rooms, kindergarten installations and screen illumination of small children's' toys safe. As a result, more research is needed to understand where the safe zone really is. W.W., February 2016