Products, Materials & Tools | Jul 24, 2012

AIXTRON Introduces AIX G5+: 5x200 mm GaN-on-Si Technology for the AIX G5 Reactor Platform

With its latest product, AIX G5+, AIXTRON SE has introduced a 5x200 mm GaN-on-Si (Gallium Nitride on Silicon) technology package for its AIX G5 Planetary Reactor® platform. Following a customer-focused development program, this technology was designed and created in AIXTRON’s R&D laboratory and consists of specially designed reactor hardware and process capabilities. It is now available as a part of the AIX G5 product family and any existing G5 system can be upgraded to this latest version. Details of G5+ have already been disclosed to some of AIXTRON’s key customers.

“GaN-on-Si technology is a hot topic for MOCVD users and manufacturers today”, states Dr. Rainer Beccard, Vice President Marketing at AIXTRON. “It is the technology of choice for the emerging power electronics market segment, and also a very promising candidate for future high performance and low cost High Brightness LED manufacturing. The wafer size and material plays a crucial role when it comes to cost effective manufacturing processes, and thus the transition to 200 mm Standard Silicon wafers is a logical next step on the manufacturing roadmaps, as it offers unique economies of scale.”

”Being convinced that uniformity and yield are the key success criteria in 200 mm GaN-on-Si processes, AIXTRON conducted a dedicated R&D program”, adds Dr. Frank Wischmeyer, Vice President and Program Manager Power Electronics at AIXTRON. “We started the development process by conducting an extensive simulation program, which enabled us to design fundamentally new hardware components that provide unique process performance in our 5x200 mm processes, while still being compatible with the well-proven AIX G5 reactor platform.” The results are extremely stable processes, providing much better uniformity of material properties and enabling higher device yield than any other MOCVD platform, whilst offering a reactor capacity of 5x200 mm.

Some initial feedback from customers confirms the success of this technological development. Many of them have noted in particular that the fully rotationally symmetrical uniformity pattern on all five 200 mm wafers, the use of standard thickness silicon substrates and the controlled wafer bow behavior is exactly what they require for silicon-style manufacturing. “This uniformity pattern has been an inherent feature of AIXTRON’s Planetary Reactor® technology, which we can now successfully obtain on 200 mm GaN-on-Si wafers”, underlines Dr. Wischmeyer.

For further information on AIXTRON please consult our website at: www.aixtron.com.

FEATURED

Cree Launches Industry’s Highest Efficacy 90 CRI COB LEDs

Cree Launches Industry’s Highest Efficacy 90 CRI COB LEDs Cree, Inc. announces the XLamp® eTone™ LEDs, a breakthrough set of chip-on-board (COB) LEDs that delivers beautiful 90 color rendering index (CRI) light quality at the same efficacy as today’s standard 80 CRI LEDs. Delivering up to 155 lumens per watt (LPW) at 3000 K CCT, 85°C, Cree’s new eTone COB ... Read more »

FEATURED

Luminus Gen 4 COBs: 70W CMH Spots Finally Meet Their Match

Luminus Gen 4 COBs: 70W CMH Spots Finally Meet Their Match Luminus Devices latest, fourth generation chip-on-board LED technology (Gen 4) will open new opportunities in retail lighting and a wide range of indoor and outdoor lighting applications. Luminus Gen 4 COB technology combines significant improvements in efficacy, flux density, high maximum drive ... Read more »

EDITORIAL

High Conductive Foils Enabling Large Area Lighting

High Conductive Foils Enabling Large Area Lighting Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP as one of the leading partners for research and development for surface technologies and organic electronics and Sefar AG, a leading manufacturer of precision fabrics from monofilaments, developed a roll-to-roll ... Read more »

page_peel