Components | LEDs | microLEDs | Jan 05, 2018

Plessey Commits to Launching Industry’s First Monolithic microLED Displays

Plessey Semiconductor, a leading developer of award-winning optoelectronic technology solutions, today announces its commitment to being the first to market with a monolithic microLED based display based on GaN-on-Silicon.

Plessey has also commenced an extensive licensing program that will see the company license out its GaN-on-Silicon expertise to microLED manufacturers in line with its new business strategy of becoming the photonic industry’s foremost technology platform provider.

Demand for microLED displays is accelerating with research consultancy Yole Développement forecasting the market could reach up to 330 million units by 2025. GaN-on-Silicon is the only technology platform capable of addressing all of the challenges involved with manufacturing microLED displays in high volumes and cost-effectively, Plessey intends to demonstrate its expertise in the field by being the first to manufacture a monolithic display based on microLEDs fabricated using a GaN-on-Silicon approach.

“We made the decision to become a technology platform provider in order to get our technology out to the widest possible manufacturing base to meet this growing demand,” explained Michael LeGoff, CEO, Plessey Semiconductor. “By being the first to market with a monolithic microLED display we will be demonstrating our expertise and the ability to access our proven turn-key solution, enabling manufacturers to ramp up the development and production of microLED displays to address emerging applications.”

One of the main challenges involved with manufacturing microLED displays using a non-monolithic approach is the placement of LED chips onto a CMOS backplane, currently achieved using pick and place equipment. This involves the individual placement of every LED on a pitch of less than 50μm, requiring new and expensive equipment that is subject to productivity issues. As the pixel density of displays increases and pitch reduces, pick and place becomes less feasible both commercially and technically.

Moving to a monolithic process removes the need for chip placement and will enable smaller and higher resolution displays for a range of applications, including virtual reality (VR), augmented reality (AR), and head-up displays. As the only monolithic solution commercially available, Plessey’s technology doesn’t require pick and place equipment and isn’t subject to the associated productivity issues.

A fully monolithic approach also supports the integration of the standard CMOS circuitry necessary for driving microLED displays, as well as the close integration of high performance graphic processing units (GPUs), all of which can be carried out using standard CMOS manufacturing methods. By solving all of the major challenges, licensees gain instant access to a technology platform that is ready for volume production.

“GaN on Silicon is the only technology that makes sense in terms of scalability and performance,” commented Dr Keith Strickland, CTO, Plessey Semiconductor. “It offers better thermal conductivity than Sapphire and higher luminosity than OLED, which is why this technology is widely acknowledged to be the only one that can deliver high resolution, high luminance displays.”

For further information, please visit: http://www.plesseysemiconductors.com/microled-displays/

About Plessey:

Plessey is a leading expert in the development and licensing of technologies that are revolutionising the solid-state lighting sector. With its in-depth understanding and breadth of patents relating to GaN-on- Silicon, the company has established itself as a valued IP partner to OEMs producing the next generation of photonics solutions. Plessey has been successfully licensing its pioneering sensor technology solutions within the healthcare and automotive sectors for many years.
For further information and datasheets, please visit www.plesseysemiconductors.com

FEATURED

LumiTop 4000: Comprehensive Optical Wafer Testing for μLEDs

LumiTop 4000: Comprehensive Optical Wafer Testing for μLEDs Instrument Systems offers a unique camera-based measurement solution for μLED wafer testing that generates 2-dimensional, pixel-resolved optical analyses within given cycle times. The LumiTop 4000 has a resolution of 12 MP and can detect the smallest of defects and inhomogeneities on the wafer. ... Read more »

FEATURED

Lumileds Maximizes Field Usable Lumens: New LUXEON HL2X LED

Lumileds Maximizes Field Usable Lumens: New LUXEON HL2X LED Lumileds introduces the LUXEON HL2X, the ideal choice for roadway lighting and sports lighting fixtures with the highest flux and efficiency in an industry standard package. "With 318+ lumens at 700 mA and 85°C, LUXEON HL2X delivers more 'field usable lumens' for optical engineers to work with. ... Read more »

EDITORIAL

Australian Associated Press Recently Wrote: Red Light Could Improve Over-40s' Eyesight

Australian Associated Press Recently Wrote: Red Light Could Improve Over-40s' Eyesight A small LED torch that emits deep red light could help improve declining eyesight, scientists have said: A study by University College London, involving a small sample size of 24 people, has shown that staring at long wavelength light for three minutes every day can "significantly improve vision" ... Read more »

EDITORIAL

Signify Invests to Broaden Its UV-C Lighting Portfolio for Professional Disinfection

Signify Invests to Broaden Its UV-C Lighting Portfolio for Professional Disinfection Signify, the world leader in lighting, is increasing its UV-C lighting production capacity and expanding its UV-C product portfolio. The company is leveraging more than 35 years of expertise in UV-C lighting to address the growing global need for the disinfection of air, surfaces and objects. Read more »