Resources | Projects | UV-Modules | UV-LEDs | Dec 06, 2017

“UV Power” Research Project Is Working on LED-Replacements for Conventional UV Light Sources

Since February 2017, a total of five research institutes and companies have been working on “UV Power”, a collaborative project funded by the German Federal Ministry of Education and Research (BMBF). The partners have made it their goal to provide high-power UV LEDs to cover a wide variety of applications. These LEDs will eventually replace conventional UV light sources, which often contain toxic mercury, in areas such as production, disinfection, the environment, life sciences and medicine. UV LEDs are also likely to open up new areas of application.

As part of “Advanced UV for Life”, a consortium of research institutes and companies which is being funded under the federal “Zwanzig20” program, Osram Opto Semiconductors is working with four partners on high-power UV LEDs for the mass market: the Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik (FBH), the Technical University of Berlin, LayTec AG and UVphototonics NT GmbH. Prototype LEDs and the technology for producing high-power LEDs for the UVB and UVC spectrums on the basis of the aluminum gallium nitride (AlGaN) material system are scheduled to be presented by 2020.

The partners are therefore pooling their scientific know-how and making their highly specialized technical facilities and analysis methods available. Development of the highpower LEDs is taking place along the entire technology chain for LED production. “The various tasks have been distributed among the partners on the basis of their strengths – everything from the production of structured sapphire substrates, epitaxy and chip processing to packaging and analytics”, said Dr. Hans-Jürgen Lugauer, Head of UV Development at Osram Opto Semiconductors. “With our presence on the international market and our expertise in industrial manufacturing we are boosting the impact of the consortium considerably,” he added.

To speed up development and make efficient use of resources, the partners are splitting their work into different wavelength ranges. In addition to coordinating the entire project, Osram Opto Semiconductors is taking on the wavelength range of 270 to 290 nm. In epitaxy, the Ferdinand-Braun-Institut is covering the adjacent wavelengths in the UVB range between 290 and 310 nm and processing the epitaxial wafers into UV chips. The Technical University of Berlin is focusing on the wavelength range of 250 to 270 nm, applying its expertise in material analysis for AIGaN materials and AIGaN LEDs. TU Berlin also has extensive specialized equipment for UV analysis. LayTec AG is developing tailor-made techniques for controlling the epitaxy and plasma etching systems. FBH spin-off UVphotonics NT GmbH is the interface to users. It is responsible for optimizing the chip design, for achieving high currents and for efficient cooling. The company is also handling the statistical collection and analysis of process data from the entire production chain and making this data available to the project partners for optimizing the production process. The important subjects of assembly technology and the effects of aging will be investigated by FBH, TUB and UVphotonics in further projects as part of the consortium.

The optical outputs of the new LEDs are expected to be greater than 120 mW at 300 ± 10 nm, 140 mW at 280 ± 10 nm and 80 mW at 260 ± 10 nm. The research group is also working on making significant improvements to the aging behavior of the LEDs so they can be operated longer and more economically.

For more information on Advanced UV for Life, please visit https://www.advanced-uv.de/en/about/welcome/

About Osram:

Osram, based in Munich, is a leading global high-tech company with a history dating back more than 110 years. Primarily focused on semiconductor-based technologies, our products are used in highly diverse applications ranging from virtual reality to autonomous driving and from smart phones to smart and connected lighting solutions in buildings and cities. Osram uses the endless possibilities of light to improve the quality of life for individuals and communities. Osram’s innovations enable people all over the world not only to see better, but also to communicate, travel, work and live better. Osram has approximately 26,400 employees worldwide as of end of fiscal 2017 (September 30) and generated revenue of more than €4.1 billion. The company is listed on the stock exchanges in Frankfurt and Munich (ISIN: DE000LED4000; WKN: LED400; trading symbol: OSR). Additional information can be found at www.osram.com

FEATURED

Nichia Showcases LEDs with 'Light so Good'

Nichia Showcases LEDs with 'Light so Good' At Light + Building 2020 held in Frankfurt, Nichia – the leader in high-performance LED solutions – reveals it will present at least three complementary technologies to improve the delivery of light quality under an over-arching banner of 'Light so Good'. Read more »

EDITORIAL

Future Lighting Solutions Launches Offline Lighting System Selector Mobile App for iOS and Android

Future Lighting Solutions Launches Offline Lighting System Selector Mobile App for iOS and Android Montreal, Canada (mynewsdesk) January 21, 2020 - Future Lighting Solutions (FLS), a leading provider of solid-state lighting, engineering expertise and design tools, is proud to announce the launch of their new offline Lighting System Selector for iOS and Android devices. Read more »

EDITORIAL

Researchers from Hokkaido University Let Europium Shine Brighter

Researchers from Hokkaido University Let Europium Shine Brighter A stacked nanocarbon antenna makes a rare earth element shine 5 times more brightly than previous designs, with applications in molecular light-emitting devices. - The europium Eu(III) complex with nanocarbon antenna emitting fine red light. Read more »

EDITORIAL

Zhaga Summit – September 23rd in Bregenz

Zhaga Summit – September 23rd in Bregenz Luger Research and Zhaga are proud to announce that the 2020 LpS/TiL conference will host a Zhaga Summit. This one-day event will provide application-driven introductions to the latest Zhaga standards, review their market reception, and solicit inputs from the specifier community through workshops. Read more »

EDITORIAL

Research Confirms that Light Pollution Can Suppress Melatonin Production in Humans and Animals

Research Confirms that Light Pollution Can Suppress Melatonin Production in Humans and Animals Melatonin sets the internal clock. Researchers from IGB in an international team have analyzed data on the impact of light pollution on melatonin formation in humans and vertebrates. They found that even the low light intensities of urban skyglow can suppress melatonin production. Melatonin ... Read more »

EDITORIAL

CIE Announces Availability of New Documentation: Test Method for OLED Luminaires and OLED Light Sources

CIE Announces Availability of New Documentation: Test Method for OLED Luminaires and OLED Light Sources The new CIE International Standard S 025-SP1/E:2019 is a supplement to CIE S 025:2015 Test Method for LED Lamps, LED Luminaires and LED Modules specifies the requirements for measurement of electrical, photometric, and colorimetric quantities of OLED luminaires and OLED light sources. These sources ... Read more »

EDITORIAL

Care, Caution & Awareness Are Needed When Using LED Lights

Care, Caution & Awareness Are Needed When Using LED Lights Kyra Xavia is a researcher, educator and investigative journalist based in New Zealand. Her roles as general secretary of the Light and Lighting Research Consortium (LLRC), delegate for the International Dark Sky Association (IDA), New Zealand Ambassador for Women in Lighting 2019, and co-leader of ... Read more »