Skip to content. | Skip to navigation

Personal tools

The Global
Information Hub for
Lighting Technologies
and Design

Sections
Home > Resources > Projects & Fundings > DOE Awards Three Grants to SSL Technology
Resources | Fundings | DoE | SSL | May 18, 2016

DOE Awards Three Grants to SSL Technology

The U.S. Department of Energy Office of Science and Energy Efficiency and Renewable Energy have awarded three Small Business Innovation Research (SBIR) grants targeting advances in solid-state lighting (SSL) technology. These Phase I grants will explore the technical merit and commercial potential of different innovative concepts or technologies that are expected to contribute to the achievement of the price and performance goals described in DOE’s SSL R&D Plan.

The three awards are briefly summarized below:

SBIR Recipient: Lucent Optics, Inc.
Title: Ultra-Thin Flexible LED Lighting Panels

Summary: This project will develop and demonstrate a revolutionary new type of thin and flexible SSL panel that combines the high luminous efficacy and low cost of LEDs with the ultra-thin form factor and flexibility of OLEDs. The proposed approach extends the principle of edge-lit LED lighting to optical light guides of film thickness to achieve conformable illumination panels that emit a soft, uniform beam over the entire surface area. It employs a novel optical coupling technology that allows for efficient injection of light into light-guiding substrates having much smaller thicknesses than the size of current LED sources. This material-efficient approach for manufacturing lighting panels is also expected to lower the cost of wide-area LED luminaires by up to 30% compared to the state of the art. In Phase I, Lucent Optics will conduct a feasibility study of the panel, develop a functional pilot prototype, and evaluate its performance.

SBIR Recipient: Lumisyn, LLC
Title: LED Downconverter Phosphor Chips Containing Nanocrystals

Summary: A major roadblock to higher efficiencies for warm-white LEDs is the use of spectrally wide red-emitting phosphors that emit a significant amount of their energy either in the far-red or infrared part of the spectrum, where the human eye’s response is low. This common design can produce the desired warmer light, but at the expense of lower efficiency. Colloidal nanocrystals are a candidate solution but today suffer from unwanted quenching of the quantum efficiency with concurrent increases in their emission spectral width at the elevated temperatures and excitation levels that are attained during operation of high-power LEDs. This project proposes a new and novel use of existing nanocrystals incorporated into low-cost inorganic-based encapsulant materials. Candidate encapsulant materials will be synthesized, analyzed for performance, and then optimized to enable the maximum efficiency and lifetime. The goal for Phase I is to demonstrate encapsulated nanocrystals used in conjunction with green-yellow phosphors that will achieve a 3x efficacy increase  and that will maintain their high-performance optical properties while significantly enhancing their long-term stability under typical LED accelerated-life test conditions.

SBIR Recipient: InnoSys, Inc.
Title: Lowering Barriers to Intelligent SSL Adoption Through a Combination of a Next Generation Installation/Configuration Software Platform and a Novel Luminaire

Summary: InnoSys will design and demonstrate the ability of a novel hardware and software application platform to dramatically simplify the installation, configuration, control, and analytics aspects of an intelligent lighting system, so that it can be self-commissioning and give users greater control of their lighting experience. To provide a platform for this unique approach, InnoSys will develop several configurations of a novel SSL luminaire for office spaces. Used in combination with the proposed software, this task-ambient lighting approach will yield significant lighting-energy conservation in office and other spaces. In Phase I, InnoSys will demonstrate how the combination of this novel luminaire family and unique and innovative secure software platform will enable a lighting system that is self-commissioning, dramatically more energy-efficient than conventional lighting, and highly user-experience driven to accelerate adoption of SSL and reduce energy consumption.

FEATURED

When Very High Light Output and Efficiency are Required for Demanding Applications, New LUXEON 7070 Checks All the Boxes

When Very High Light Output and Efficiency are Required for Demanding Applications, New LUXEON 7070 Checks All the Boxes More lumens, higher efficacy, and lower system costs are the driving forces behind new designs for a broad range of indoor and outdoor high light output applications. Lumileds new LUXEON 7070, introduced today, is designed to outperform similar lead-frame and ceramic high-power solutions with ... Read more »

FEATURED

NEW Extreme High Power LEDs Deliver Best Optical Performance

NEW Extreme High Power LEDs Deliver Best Optical Performance New XLamp® XHP70.3 LEDs deliver the best lumen density, reliability and optical control available in a 7x7 mm footprint.   Read more »

FEATURED

Edison Opto UVA + W & UVC Series Customize Design Solution

Edison Opto UVA + W & UVC Series Customize Design Solution Edison Opto offers customized UVA + White and UVC solutions for continuous disinfection to reduce bacteria and airborne viruses. In the wake of the global outbreak of COVID-19, the people’s need for anti-epidemic, sterilization, and anti-virus products has escalated, ranging from portable ... Read more »

EDITORIAL

deLIGHTed Talks: Good Light – Good Life in Wintertime, November 3, 2021

deLIGHTed Talks: Good Light – Good Life in Wintertime,  November 3, 2021 The Good Light Group, together with the Society for Light Treatment and Biological Rhythms (SLTBR), the Daylight Academy (DLA), the International Association of Lighting Designers (IALD), and Luger Research (LR), are organizing and presenting the “Good Light – Good Life” lectures. The webinar ... Read more »

page_peel