Skip to content. | Skip to navigation

Personal tools

The Global
Information Hub for
Lighting Technologies
and Design

Home > Resources > Articles & Interviews > Can You Show Me the Next S-Curve, Please?
Resources | LpR Article | Commentary | Trends | Feb 21, 2018

Can You Show Me the Next S-Curve, Please?

The evolution of technologies is often described using the “S-curve” model. In the early stage, in the first phase of its life cycle, technology is mainly driven by fundamental research. Only a few players are active at that time and innovation steps are quite large. In the second phase, early adopters start to develop products and bring them to market. This phase is characterized by huge investments. In the third phase, more and more players enter the technology field, competition becomes important and development speed of the technology decreases. In the last phase, the technology is mature, (nearly) everybody can use it, there are fewer margins and the technology should be replaced by a new one. Many of the SSL technologies have meanwhile reached maturity. Where are the upcoming technologies, what will be the next S-curve? Looking at technology discussions and lectures at LpS 2017 I tried to find answers to these questions.

In his keynote speech, Jan Denneman (Global Lighting Association) identified IoT/connected lighting and Human Centric Lighting (HCL) as the next technology S-curves. An analysis of the LpS 2017 lectures shows that connected lighting is based on mature communication technologies that are already in a late stage of their life-cycle. Of course some aspects have to be adopted for lighting; for example, low latency for IoT devices with limited computational resources are mandatory for lighting devices as explained in one of the lectures. But these adoptions will be small innovation steps. Devices ready for the lighting market have been presented and will be available for everyone. Differentiation potential and chances for growth in the lighting industry will be very limited - even if adoption of the technology is a must for everyone in the branch.

HCL is different. Several lectures dealing with fundamental research on the effect of light on humans were presented but little implementation of research results into products or systems was shown. This brings me to the conclusion that we are still in a very early stage of the HCL S-curve (for the past 10 years). How the development of this technology will look and how fast it will start to rise is hard to estimate. But human centric lighting has the potential to become one of the next S-curves in solid state lighting.

There are other technologies that can be compared to IoT and HCL that might become one of the interesting S-curves. Quantum dots (QD) are still an object of basic research, as the work of Ekaterina Nannen, winner of the LpS 2017 Scientific Award, shows. But there are also promising steps towards market introduction of LEDs with QDs. Naturally, work still has to be done to develop cadmium free QDs but this technology could be an energy efficient replacement for phosphors, providing high level light quality. They can also be used as light emitters, as Ekaterina Nannen showed.

Laser diode (LD) systems show very promising properties, at least for narrow beam systems or systems with special light distributions. Although automotive head lamps have already been realized using this technology, the conference showed that there is still some ongoing research. Especially phosphors and conversion systems have to be optimized and characterized. No new applications of LD systems in products were shown, which may be taken as evidence that LD lighting is in an early stage of the S-curve.

SWe can never predict how a technology will develop; when the S-curve will start to rise or how important the technology will become. To ascertain which technologies might be of interest in the future, an analysis of the conference topics would help.

Günther Sejkora
He received his PhD from the University of Innsbruck after studying
physics, IT and mathematics. He spent more than 20 years in the Research &
Development department at Zumtobel Lighting and then went on to start his own company, “items” where, together with industrial partners, he has carried out more than 50 R&D and technology projects in the fields of LED lighting and lighting controls. He was Managing Director of the Kompetenzzentrum Licht GmbH from 2010 to 2015 and is currently the Research and Innovation Manager at Luger Research.

(c) Luger Research e.U. - 2018


WEBINAR, May 20th – Luxury Store Lighting 101: Innovation, Design, Sustainability

WEBINAR, May 20th – Luxury Store Lighting 101: Innovation, Design, Sustainability This webinar will discuss key aspects of lighting for store locations representing sophisticated retail brands. The focus will be given to the efficacy, quality, design and sustainability of a lighting scheme. The complete lighting supply chain is served by the webinar. Read more »


Precise Characterization of Infrared Sources

Precise Characterization of Infrared Sources The demand for IR measurement solutions has increased significantly in the recent years. IR LEDs and IR lasers such as VCSELs have enabled many new applications in the field of “IR sensing”, using the NIR range (800-1000 nm) but also higher wavelengths as 1380 nm. Measurement tasks range from 3D ... Read more »


Tiny and Powerful LUXEON Rubix LEDs Raise the Bar for CRI, Lumens, and Efficacy with Addition of Lime and PC Amber

Tiny and Powerful LUXEON Rubix LEDs Raise the Bar for  CRI, Lumens, and Efficacy with Addition of Lime and PC Amber Lumileds today introduced two new colors – PC Amber and Lime – for its very small and very powerful LUXEON Rubix LED portfolio. The 1.4 square millimeter footprint is almost pixel like and belies the light output that’s possible from this high-power LED. There are 6 color options plus white in the ... Read more »


Cree LED Offers New RGBW LEDs for Architectural Illumination

Cree LED Offers New RGBW LEDs for Architectural Illumination Cree LED offers the broadest line of RGBW LEDs for architectural illumination. The market leading, upgraded CLQ6B, new CLW6A and CLR6A SMD LEDs are high performing 3 & 4 color LEDs. Read more »


WHITE PAPER: Measuring UVA & Violet LED Light Sources

WHITE PAPER: Measuring UVA & Violet LED Light Sources As the development of new UV LED sources continues at an ever-growing pace, so do the industrial applications that utilize them. UV LEDs are being put to work in various industrial processes, medical applications, and disinfection solutions. Efficient utilization of the UV radiation requires good ... Read more »