Resources | Commentary | UV | Disinfection | Feb 12, 2020

Selecting the UV LED Wavelength for Purification Applications

Patrick Durand is the Worldwide Technical Director at Future Lighting Solutions (FLS) with over 15 years of experience in the solid state lighting industry. Patrick leads the FLS Technical Marketing teams and FLS laboratory teams located in multiple regions around the world with the objective of providing world-class support to lighting OEMs in developing luminaires with the latest SSL technology from the light source to the complete system incorporating the LED driver, optic, thermal management and intelligent control solutions.

Recently there have been articles about how UV LED technology will revolutionize water and surface purification. However, like with every new technology (or application of existing technology in a new market), there are elements of confusion and misinformation. The key challenge for the adoption of emerging technologies is to determine the right balance between technology readiness, pricing and market acceptance. As an example, it will take several years before UV LED performance and pricing reach an appropriate level for targeting municipal water treatment. Applications for which UV LEDs are ready today include water dispensers, ice makers, tumblers, humidifiers, vacuum cleaners, medical instruments and area/hospital lighting, amongst others.

The main value proposition of UV technology is to purify without potentially harmful chemicals.  UV LED technology is ideal for these applications since they are compact, instant-on, low voltage devices with superior reliability over traditional UV lamps. For water and surface purification applications, low-pressure mercury lamps are traditionally used, which have a peak wavelength of 254 nm. This has caused a significant proportion of the market to believe that LEDs must also emit light at 254 nm to be effective. The reality is that 254 nm is not the peak absorption wavelength of bacteria and viruses but is simply a convenient wavelength for mercury lamps.  In fact, the peak absorption wavelength of bacteria and viruses is around 265 nm. Most UV-C LEDs have a peak wavelength between 275 nm and 280 nm and are just as effective as 254 nm for purification purposes.

For water purification, there is no debate that UV-C technology is required to eliminate the threat of bacteria and viruses. However, for surface purification, the market includes UV-C (i.e. 275 nm) and UV-A (i.e. 405 nm) solutions. The market perception is that 405 nm LEDs are safer and lower cost but the reality is quite different.  If the required amount of light to achieve the same impact on bacteria is compared, then the perception is proven to be inaccurate. In fact, 405 nm light requires about 1200 times more light than at 275 nm, which means that due to the required light density at 405 nm, the 275 nm UV-C LED will be significantly lower cost and safer at the system level.

It's important to understand the main differences between 275 nm versus 405 nm LEDs for surface purification. The first is how organisms are affected by the different wavelengths. With 275 nm LEDs, the light penetrates through the cell walls of all organisms such as bacteria, viruses, and mold where the light disrupts the structure of their DNA molecules, prohibiting reproduction, rendering organisms inert. 405 nm light targets specific chemical compounds (porphyrins) found in cells of certain bacteria to cause an oxidation reduction reaction where this does not kill the bacteria but rather inactivates them.

This means that 275 nm light is lower cost, safer and targets a wider range of organisms for equivalent performance. The main clear advantage of UV-A LEDs for luminaire designs is that UV-A light is compatible with standard diffusors, PMMA and PC optics where UV-C light requires Quartz glass or silicone optics. The bottom line is that an impractical number of UV-A LEDs are required to reach a > 99.9% bacterial inactivation rate where this is easily achieved with 275 nm LEDs. Although there is a market for luminaires with UV-A LEDs providing some level of purification, with the rise antibiotic resistant bacteria infecting millions of people per year, it's clear that UV-C LEDs should be the technology of choice for surface and water purification in the years to come.

FEATURED

Precise Measurement of UV Light Sources for Disinfection

Precise Measurement of UV Light Sources for Disinfection UV radiation encompasses a very wide wavelength spectrum between 10 and 400 nm and is subdivided in ISO Standard 21348 into three ranges. The UVC range between 100 and 280nm is currently extremely relevant for air and water disinfection for combating COVID-19. Since the outbreak of the pandemic ... Read more »

EDITORIAL

Signify: New EU Ecodesign and Energy Labeling Regulations Are Met

Signify: New EU Ecodesign and Energy Labeling Regulations Are Met Signify (Euronext: LIGHT), confirms that its leading lighting portfolio will meet the new EU Ecodesign and Energy labeling regulations, which will affect all lighting products in the EU Member States from September 2021 onwards. The new regulations are representative of the enormous transition that ... Read more »

EDITORIAL

New DLC Report: Interoperability for Networked Lighting Controls

New DLC Report: Interoperability for Networked Lighting Controls Interoperability for Networked Lighting Controls explores the current interest in networked lighting controls (NLC) and the benefits various stakeholders can attain from championing interoperable systems. The report details three specific and actionable use cases and explains why interoperability ... Read more »

EDITORIAL

Measuring Uniformity of LED Luminaires in Seconds: MKS Announces Ophir® FluxGage™ 604 Measurement System

Measuring Uniformity of LED Luminaires in Seconds: MKS Announces Ophir® FluxGage™ 604 Measurement System MKS Instruments, Inc. (NASDAQ: MKSI) has announced the Ophir® FluxGage™ 604 compact measurement system for LED luminaires. This new series features four additional color sensors evenly arranged in the bottom of the device delivering further x,y, and CCT data as well as the illuminance. Within ... Read more »

EDITORIAL

CIE Position Statement on the Use of UV Radiation to Manage the Risk of COVID-19 Transmission

CIE Position Statement on the Use of UV Radiation to Manage the Risk of COVID-19 Transmission The coronavirus disease (COVID-19) pandemic has accelerated the search for environmental controls to contain or mitigate the spread of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) responsible for the disease. SARS-CoV-2 is usually transmitted from person to person by contact ... Read more »

EDITORIAL

Tech-Talks BREGENZ - Prof. Ruairí O'Brien, Founder of Ruairí O'Brien Lighting Design

Tech-Talks BREGENZ - Prof. Ruairí O'Brien, Founder of Ruairí O'Brien Lighting Design Ruairí O'Brien, associate professor and head of the Architecture and Visual design department at the German University in Cairo and CEO of Ruairí O'Brien. Architektur. Licht Raumkunst, surprised and delighted the audience with his lecture at LpS 2016 when he talked about allowing darkness. He ... Read more »

EDITORIAL

See and Be Seen: New LED from Osram Ensures Optimal Visibility in Dense Fog

See and Be Seen: New LED from Osram Ensures Optimal Visibility in Dense Fog Dense fog and poor visibility repeatedly lead to serious rear-end collisions. In poor weather conditions, good visibility through a bright rear fog light is very important. The Synios P2720 CR from Osram provides many benefits to manufacturers of rear combination lamps, such as enabling compact ... Read more »