Skip to content. | Skip to navigation

Personal tools

The Global
Information Hub for
Lighting Technologies
and Design

Home > Resources > Articles & Interviews > Kenneth Martin from Zumtobel about Comfortable Lighting
Resources | Commentary | Systems + Applications | Quality | Standardization | Health + Wellbeing | Sep 19, 2020

Kenneth Martin from Zumtobel about Comfortable Lighting

Kenneth Martin has been specifying, qualifying an developing components and characterization setups for LED light sources within the Zumtobel Group since 2006. With his expertise on spectral measurements and applications, he supports integrative lighting solutions topics. He gathered valuable knowledge in physics and optical system engineering while studying at the University of Applied Sciences RV-Weingarten, during the internships at a quality assurance department of a reflector aluminum manufacturer and the optical development department of Zumtobel. He combines his enthusiasm for lighting and sustainable construction engineering with a DIY philosophy.

An important question driving us forward these days is: What effects does light have on us, besides imaging information? Initial scientific indications show impacts via human skin with its melanopsin producing fat cells and the far red light activated mitochondria, but effects on the eyes' cells are still the main focus of research.  Unlike skin, the eyes' reception of light at the single cells of the retinal tissue is regulated by the iris and filtered by its directionality via the lens.  

Currently, five types of photosensitive retinal cells have been classified: Next to the cones in its three variants that are sensitive to short, middle and long wavelengths, there are also the rods which are most sensitive within the cyan (appearing) wavelength at low intensities. For the past few years we have gotten to know more about the fifth photoreceptors, the intrinsically photosensitive retinal ganglion cells (IPRGCs), containing melanopsin, which is most sensitive to the azure wavelength. These cells also get signals from other cell types, but how all the signals of the cells and from both eyes are combined for the physiological mechanisms is still being researched.

We can describe some average "stimulus" values by spectral irradiation measurements at eye level. But this is only directly comparable to another situation if it has the same relative radiance distribution within the whole visible field. The distribution of the different cell types on the retina and their relative degree of saturation may play an important role on the reactions. That's why absolute readings of lux, W/m², cd or cd/m² are usually non-transferable without further ado. The spatial and spectral distribution of the signals from the retinal cells - a kind of histogram - is the minimum required information from a hyperspectral imaging measurement, to seriously describe the effects in detail.

Like a video camera, the eyes don't have the possibility to greatly alter the signal integration time along the intensity levels. Instead, there is an impulsive pupillary reflex and a slower steady state pupil size regulation, optimizing the irradiation level at the retina and protecting it from excessive intensities. Other physiological effects are the main adaptation level (chromatic and brightness perception) and melatonin suppression. Those effects react to the "histograms" of the relative stimuli magnitudes of the five different photoreceptor types, and therefore on the spectral and spatial distributions of the reflected light.

When we focus our vision e.g. at work, the light that we receive, should be optimized so that we have the widest color and lightness contrast sensitivity range. And it should also induce the right non-visual effectiveness and the lowest strain level on the retinal cells, supported by correctly functional physiological mechanisms.

Based on the numerous new research results, we need to question whether illumination based regulations and quality standards should be replaced. To include long-term effects of light on health and stress to the eyes, we need new quality criteria based on the active photoreceptor stimulus distributions. Contrasts from bright spots should not be excessive nor should there be reduced object color contrasts and brightness gradients. Nowadays, most people have a smartphone that can roughly calculate lighting quality by the camera pictures' histogram data. At good values of new quality criteria, it should be possible to easily make acceptable snapshots without effects from glaring lights or flicker – even at night. It helps if lighting is not just vertical or diffuse but also has one visible inclination.


deLIGHTed Talks: Good Light – Good Life in Wintertime, November 3, 2021

deLIGHTed Talks: Good Light – Good Life in Wintertime,  November 3, 2021 The Good Light Group, together with the Society for Light Treatment and Biological Rhythms (SLTBR), the Daylight Academy (DLA), the International Association of Lighting Designers (IALD), and Luger Research (LR), are organizing and presenting the “Good Light – Good Life” lectures. The webinar ... Read more »


NICHIA Unveils High Radiant Flux Density UV-C LED

NICHIA Unveils High Radiant Flux Density UV-C LED NICHIA, the world’s largest LED manufacturer and inventor of the high-brightness blue and white LED, has launched a high radiant flux density UV-C LED that can help target the inactivation and sterilization of various bacteria and viruses, including the new coronavirus. Read more »


Zhaga Summit: "Sustainable Lighting for Smart Cities and Buildings"

Zhaga Summit: "Sustainable Lighting for Smart Cities and Buildings" Sustainability is a major trend in the lighting industry, driven by regulations and requested by customers and society. The Zhaga Consortium is hosting this online event on 29 September, 15:00 – 18:00 CEST with speakers from national authorities, cities, industry association, lighting design and ... Read more »


Near-field Analysis of VCSEL Arrays

Near-field Analysis of VCSEL Arrays The VTC 4000 is Instrument System‘s VCSEL testing camera for comprehensive near-field analysis of complete VCSEL arrays. It enables the absolutely calibrated, traceable and polarization-controlled 2D characterization of all relevant parameters for every single emitter on the array. The VTC 4000, ... Read more »