Technologies | LEDs | Light Generation | Dec 13, 2017

Atomistic Calculations Predict that Boron Incorporation Increases the Efficiency of LEDs

High-power white LEDs face the same problem that Michigan Stadium faces on game day -- too many people in too small of a space. Of course, there are no people inside of an LED. But there are many electrons that need to avoid each other and minimize their collisions to keep the LED efficiency high. Using predictive atomistic calculations and high-performance supercomputers at the NERSC computing facility, researchers Logan Williams and Emmanouil Kioupakis at the University of Michigan found that incorporating the element boron into the widely used InGaN (indium-gallium nitride) material can keep electrons from becoming too crowded in LEDs, making the material more efficient at producing light.

The image shows the crystal structure of a BInGaN alloy. - Using atomistic calculations and high-performance supercomputers at the NERSC facility, Logan Williams and Emmanouil Kioupakis at the University of Michigan predicted that incorporating boron into the InGaN active region of nitride LEDs reduces or even eliminates the lattice mismatch with the underlying GaN layers while keeping the emission wavelength approximately the same. The lattice matching enables the growth of thicker active regions and increases the efficiency of LEDs at high power.

Modern LEDs are made of layers of different semiconductor materials grown on top of one another. The simplest LED has three such layers. One layer is made with extra electrons put into the material. Another layer is made with too few electrons, the empty spaces where electrons would be are called holes. Then there is a thin middle layer sandwiched between the other two that determines what wavelength of light is emitted by the LED. When an electrical current is applied, the electrons and holes move into the middle layer where they can combine together to produce light. But if we squeeze too many electrons in the middle layer to increase the amount of light coming out of the LED, then the electrons may collide with each other rather than combine with holes to produce light. These collisions convert the electron energy to heat in a process called Auger recombination and lower the efficiency of the LED.

A way around this problem is to make more room in the middle layer for electrons (and holes) to move around. A thicker layer spreads out the electrons over a wider space, making it easier for them to avoid each other and reduce the energy lost to their collisions. But making this middle LED layer thicker isn't as simple as it sounds.

Because LED semiconductor materials are crystals, the atoms that make them up must be arranged in specific regular distances apart from each other. That regular spacing of atoms in crystals is called the lattice parameter. When crystalline materials are grown in layers on top of one another, their lattice parameters must be similar so that the regular arrangements of atoms match where the materials are joined. Otherwise the material gets deformed to match the layer underneath it. Small deformations aren't a problem, but if the top material is grown too thick and the deformation becomes too strong then atoms become misaligned so much that they reduce the LED efficiency. The most popular materials for blue and white LEDs today are InGaN surrounded by layers of GaN. Unfortunately, the lattice parameter of InGaN does not match GaN. This makes growing thicker InGaN layers to reduce electron collisions challenging.

Williams and Kioupakis found that by including boron in this middle InGaN layer, its lattice parameter becomes much more similar to GaN, even becoming exactly the same for some concentrations of boron. In addition, even though an entirely new element is included in the material, the wavelength of light emitted by the BInGaN material is very close to that of InGaN and can be tuned to different colors throughout the visible spectrum. This makes BInGaN suitable to be grown in thicker layers, reducing electron collisions and increasing the efficiency of the visible LEDs.

Although this material is promising to produce more efficient LEDs, it is important that it can be realized in the laboratory. Williams and Kioupakis have also shown that BInGaN could be grown on GaN using the existing growth techniques for InGaN, allowing quick testing and use of this material for LEDs. Still, the primary challenge of applying this work will be to fine tune how best to get boron incorporated into InGaN at sufficiently high amounts. But this research provides an exciting avenue for experimentalists to explore making new LEDs that are powerful, efficient, and affordable at the same time.

Acknowledgements:

This work was supported by the Designing Materials to 282 Revolutionize and Engineer our Future (DMREF) Program under Award No. 1534221, funded by the National Science Foundation. This research used resources of the National Energy Research Scientific Computing (NERSC) Center, a DOE Office of Science User Facility supported under Contract No. DE-AC02-05CH11231.

About the research:

The research was carried out by Logan Williams and Emmanouil Kioupakis at the University of Michigan.

Related publication:

[1]    L. Williams and E. Kioupakis, BInGaN alloys nearly lattice-matched to GaN for high-power high-efficiency visible LEDs, Applied Physics Letters 111, 211107 (2017). DOI: 10.1063/1.4997601

Related conference presentation:

L. Williams and E. Kioupakis, Predictive Modeling of BInGaN Alloys Lattice Matched to GaN for Efficient High-Power Visible LEDs, MRS Fall Meeting 2017, EM04.03.02

FEATURED

Epoxy Features Very Low Coefficient of Thermal Expansion

Epoxy Features Very Low Coefficient of Thermal Expansion Master Bond EP30LTE-2 has been developed for joining dissimilar substrates exposed to thermally or mechanically induced stresses. It can be used for sealing, coating and encapsulating, especially for small to medium sized castings where a very low coefficient of thermal expansion (CTE) is required. Read more »

FEATURED

New BJB LED Connector for Linear LED Modules: Book 21 Compliant

New BJB LED Connector for Linear LED Modules: Book 21 Compliant Lampholders were standard in older, traditional lighting systems. Modern LED fixtures that utilize non-replaceable LEDs create several assembly and field-replacement disadvantages. Zhaga Book 21 addresses these shortcomings by standardizing linear 'socketable' LED modules. In accordance with Book ... Read more »

FEATURED

EzyLED™ Now Stocked at Digi-Key

EzyLED™ Now Stocked at Digi-Key American Bright, a global LED lighting solutions manufacturer, announced a series of EzyLED 3030. American Bright's EzyLED™ is a proprietary LED device with a built-in IC. This patented design drastically reduces the need for additional circuitry and other on-board components making it the ideal ... Read more »

FEATURED

Cree Expands Design Possibilities for Architectural Lighting with the Worldwide Proven CLQ6A LED

Cree Expands Design Possibilities for Architectural Lighting with the Worldwide Proven CLQ6A LED These SMD LEDs are packaged in an industry standard PLCC8 package. These high performance 4 color SMT LEDs are designed to work in a wide range of applications. A wide viewing angle and high brightness make these LEDs suitable for signage applications. Read more »

FEATURED

Measuring the Oxygen Content of Blood with LEDs

Measuring the Oxygen Content of Blood with LEDs Pulse oximetry is a non-invasive method for determining haemoglobin (Hb) saturation through oxygen in the blood and heart frequency. It uses the fact that oxygen-rich and oxygen-poor haemoglobin absorb red and infrared light differently. In order to measure the oxygen content reliably, LEDs with ... Read more »

EDITORIAL

LpS/TiL 2019 - Europe's Foremost Lighting Conference Discussed Latest Lighting Trends

LpS/TiL 2019 - Europe's Foremost Lighting Conference Discussed Latest Lighting Trends Last week saw the co-hosted LED professional Symposium +Expo (LpS), Trends in Lighting Forum &Show (TiL) and for the first time the Digital Addressable Lighting Interface (DALI) Summit return to Bregenz, Austria. The three international conference and exhibition events were carefully curated to ... Read more »

EDITORIAL

The 2019 LpS & TiL Award Winners: Celebrating the Complete Spectrum of Light

The 2019 LpS & TiL Award Winners: Celebrating the Complete Spectrum of Light It is a great pleasure for the LpS and TiL organization committee to announce the award winners for 2019. For the second time in a row, after the traditional cruise on the lake from Bregenz to Lindau, the gala dinner at the Eilgut Halle has proven to being a great place for the LpS & TiL award ... Read more »

page_peel