Skip to content. | Skip to navigation

Personal tools

The Global
Information Hub for
Lighting Technologies
and Design

Sections
Home > Technologies > LEDs & OLEDs > Energy-Saving New Red LED Phosphor Developed at University of Innsbruck
Technologies | Light Conversion | Phosphors | White LEDs | Apr 24, 2019

Energy-Saving New Red LED Phosphor Developed at University of Innsbruck

The human eye is particularly sensitive to green, but less sensitive to blue and red. Chemists led by Hubert Huppertz have now developed a new red phosphor whose light is well perceived by the eye. This increases the light yield of white LEDs by around one sixth, which can significantly improve the energy efficiency of lighting systems.

Light emitting diodes or LEDs are only able to produce light of a certain colour. However, white light can be created using different colour mixing processes. "In a white LED, red and yellow-green phosphors are excited by the light from a blue diode. The particles emit light in the red and green range, and in combination with the blue light they produce white light," describes Hubert Huppertz from the Department of General, Inorganic and Theoretical Chemistry at the University of Innsbruck, Austria. He and his team are working on improving the red and green phosphors. In cooperation with OSRAM Opto Semiconductors, his team has now succeeded in synthesizing a new red phosphor that has excellent luminescence properties and can make LED lighting significantly more energy-efficient.

Color shift improves luminous efficacy

The powerful red phosphor Sr[Li2Al2O2N2]:Eu2+, named SALON by the researchers, meets all the requirements for the optical properties of a phosphor. The development goes back to research carried out by Hubert Huppertz at the University of Bayreuth. As part of his doctoral thesis, he developed nitrides doped with europium that are fluorescent. These were then further optimised by the working group in Munich and are now widely used. These red phosphors are partly responsible for the fact that LEDs no longer only glow cold white, but also warm white. Interestingly, the human eye reacts most sensitively to the colour green. In the blue and red areas, the eye is less sensitive. Although these phosphors emit red light in the visible range, a large part of the energy goes into the infrared range, which the human eye does not perceive. The fluorescent material developed in Innsbruck has now succeeded in slightly shifting the light emission from red towards blue.

"Since initially only a few very small particles were available in a very inhomogeneous sample, it was difficult to optimise the synthesis," said doctoral student Gregor Hoerder. The breakthrough came when the researchers were able to isolate a single-crystal from one of the most promising synthesis products and thus determine the structure of the new material. "The substance is synthesised in such a way that it emits more orange than red," says Hubert Huppertz. "With SALON we have less energy loss, it emits exactly in the red range we can see."

Acknowledgements:

OSRAM Opto Semiconductors, a strong industrial partner, the Fraunhofer Institute for Microstructures of Materials and Systems IMWS in Halle and Dirk Johrendt's research group at the Ludwig Maximilian University in Munich were also involved in further characterizing the new material. The development has already been registered for patent.

References:

The original paper has been published under the title Sr[Li2Al2O2N2]:Eu2+—A high performance red phosphor to brighten the future" at https://www.nature.com/articles/s41467-019-09632-w

Publishing researchers: Gregor J. Hoerder, Markus Seibald, Dominik Baumann, Thorsten Schröder, Simon Peschke, Philipp C. Schmid, Tobias Tyborski, Philipp Pust, Ion Stoll, Michael Bergler, Christian Patzig, Stephan Reißaus, Michael Krause, Lutz Berthold, Thomas Höche, Dirk Johrendt & Hubert Huppertz

For details and additional information, please contact Prof. Hubert Huppertz using this link: https://www.nature.com/articles/s41467-019-09632-w/email/correspondent/c1/new 

FEATURED

WEBINAR, May 20th – Luxury Store Lighting 101: Innovation, Design, Sustainability

WEBINAR, May 20th – Luxury Store Lighting 101: Innovation, Design, Sustainability This webinar will discuss key aspects of lighting for store locations representing sophisticated retail brands. The focus will be given to the efficacy, quality, design and sustainability of a lighting scheme. The complete lighting supply chain is served by the webinar. Read more »

FEATURED

Precise Characterization of Infrared Sources

Precise Characterization of Infrared Sources The demand for IR measurement solutions has increased significantly in the recent years. IR LEDs and IR lasers such as VCSELs have enabled many new applications in the field of “IR sensing”, using the NIR range (800-1000 nm) but also higher wavelengths as 1380 nm. Measurement tasks range from 3D ... Read more »

FEATURED

Tiny and Powerful LUXEON Rubix LEDs Raise the Bar for CRI, Lumens, and Efficacy with Addition of Lime and PC Amber

Tiny and Powerful LUXEON Rubix LEDs Raise the Bar for  CRI, Lumens, and Efficacy with Addition of Lime and PC Amber Lumileds today introduced two new colors – PC Amber and Lime – for its very small and very powerful LUXEON Rubix LED portfolio. The 1.4 square millimeter footprint is almost pixel like and belies the light output that’s possible from this high-power LED. There are 6 color options plus white in the ... Read more »

FEATURED

Cree LED Offers New RGBW LEDs for Architectural Illumination

Cree LED Offers New RGBW LEDs for Architectural Illumination Cree LED offers the broadest line of RGBW LEDs for architectural illumination. The market leading, upgraded CLQ6B, new CLW6A and CLR6A SMD LEDs are high performing 3 & 4 color LEDs. Read more »

FEATURED

WHITE PAPER: Measuring UVA & Violet LED Light Sources

WHITE PAPER: Measuring UVA & Violet LED Light Sources As the development of new UV LED sources continues at an ever-growing pace, so do the industrial applications that utilize them. UV LEDs are being put to work in various industrial processes, medical applications, and disinfection solutions. Efficient utilization of the UV radiation requires good ... Read more »

page_peel