Technologies | LEDs | Micro-LEDs | Light Generation | Special Applications | Displays | Jun 19, 2018

KAIST Team Develops Flexible Blue Vertical Micro LEDs

In CES 2018, micro LED TV was spotlighted as a strong candidate for replacing the active-matrix organic light-emitting diode (AMOLED) display. Micro LED is a sub-100 um light source for red, green and blue light, which has advantages of outstanding optical output, ultra-low power consumption, fast response speed, and excellent flexibility. Professor Keon Jae Lee from the Department of Materials Science and Engineering and his team have developed a low cost production technology for thin-film blue flexible vertical micro LEDs (f-VLEDs).

However, the current display industry has utilized the individual chip transfer of millions of LED pixels, causing high production cost. Therefore, the initial market of micro LED TV will be estimated to ~ a hundred thousand dollars for global premium market. To widely commercialize micro LEDs for mobile and TV displays, the transfer method of thin film micro LEDs requires a one-time transfer of one million LEDs. In addition, highly efficient thin-film blue micro LED is crucial for a full-color display.

The team developed thin-film red f-VLED in previous projects, and now has realized thousands of thin-film blue vertical micro LEDs (thickness < 2 μm) on plastics using a one-time transfer.

The blue GaN f-VLEDs achieved optical power density (~30 mW/mm²) three times higher than that of lateral micro LEDs, and a device lifetime of 100,000 hours by reducing heat generation. These blue f-VLEDs could be conformally attached to the curved skin and brains for wearable devices, and stably operated by wirelessly transferred electrical energy.

Professor Lee said, “For future micro LEDs, the innovative technology of thin-film transfer, efficient devices, and interconnection is necessary. We plan to demonstrate a full-color micro LED display in smart watch sizes by the end of this year. ”

References:

This news was provided by The Korea Advanced Institute of Science and Technology (KAIST). - Note: Content may be edited for style and length.
This research “Monolithic Flexible Vertical GaN Ligh Emitting Diodes for a Transparent Wireless Brain Optical Stimulator” led by a PhD candidate Han Eol Lee was published in the June 2018 issue of Advanced Materials. Authors: Han Eol Lee, JeHyuk Choi, Seung Hyun Lee, Minju Jeong, Jung Ho Shin, Daniel J. Joe, DoHyun Kim, Chang Wan Kim, Jung Hwan Park, Jae Hee Lee, Daesoo Kim, Chan-Soo Shin, Keon Jae Lee.

FEATURED

The 22nd China (Guzhen) International Lighting Fair

The 22nd China (Guzhen) International Lighting Fair China (Guzhen) International Lighting Fair is based in China Lighting Capital- Guzhen Town, where thousands of lighting manufacturers lies and is dubbed as the source of lightings. With the help of local government and UBM, the fair has been successfully held for 21 editions. Read more »

EDITORIAL

High Conductive Foils Enabling Large Area Lighting

High Conductive Foils Enabling Large Area Lighting Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP as one of the leading partners for research and development for surface technologies and organic electronics and Sefar AG, a leading manufacturer of precision fabrics from monofilaments, developed a roll-to-roll ... Read more »

page_peel