Technologies | Research | LEDs | Quantum Dots | Light Conversion | Jul 19, 2018

Liquid-Suspended White QD LEDs Achieve Luminous Efficacy Record

Quantum dot (QD) white LEDs that show a luminous efficacy of 105 lm/W have been developed. The QDs are liquid-based and, according to researchers, could help the LEDs achieve an efficacy double that of LEDs that incorporate quantum dots in solid films. With further development, researchers say the new LEDs could reach an efficacy over 200 lm/W.

The new LEDs use commercially available blue LEDs combined with flexible lenses filled with QDs. Light from the blue LED causes the QDs to emit green and red, which combine with the blue emission to create white light.

To make the white LEDs, researchers from Koç University filled the space between a polymer lens and LED chip with a solution of QDs that were synthesized by mixing cadmium, selenium, zinc, and sulfur at high temperatures. The researchers used silicone to make the lens because its elasticity would allow them to inject the solution into the lens without any solution leaking out, and because silicone’s transparency would enable light transmission.

The team carried out more than 300 synthesis reactions to identify the best conditions, such as temperature and time of the reaction, for making QDs that would emit at different colors while exhibiting optimal efficacy.

“Creating white light requires integrating the appropriate amount of quantum dots, and even if that is accomplished, there are an infinite number of blue, green, and red combinations that can lead to white," said researcher Sedat Nizamoglu. "We developed a simulation based on a theoretical approach we recently reported and used it to determine the appropriate amounts and best combinations of quantum dot colors for efficient white light generation.”

The researchers demonstrated their white LEDs by using them to illuminate a 7-in. display. They showed that their liquid-based white LEDs could achieve an efficacy double that of LEDs that incorporate QDs in solid films.

Although QDs embedded in a film are currently used in LED televisions, this lighting approach is not suitable for widespread use in general lighting applications, said the researchers. Transferring the QDs in a liquid allowed the team to overcome the drop in efficacy that can occur when nanomaterials are embedded into solid polymers.

The team said that the synthesis and fabrication methods it used for making the QDs and the new LEDs were inexpensive and applicable for mass production.

As a next step, the researchers are working to increase the efficacy of the LEDs and want to reach high efficacy levels using environmentally friendly materials that are cadmium- and lead-free. They also plan to study the liquid LEDs under different conditions to ensure they are stable for long-term application.

“Efficient LEDs have a strong potential for saving energy and protecting the environment. Replacing conventional lighting sources with LEDs with an efficacy of 200 lumens per watt would decrease the global electricity consumed for lighting by more than half, " said Nizamoglu. "That reduction is equal to the electricity created by 230 typical 500-megawatt coal plants and would reduce greenhouse gas emissions by 200 million tons.”

Unlike the phosphors that are used to create white light with today’s LEDs, QDs generate pure colors because they emit only in a narrow portion of the spectrum. This narrow emission makes it possible to create high-quality white light with precise color temperatures and optical properties by combining QDs that generate different colors with a blue LED. Quantum dots are also easy to make, and the color of their emission can be easily changed by increasing the size of the semiconductor particle. By changing their concentration, QDs can be used to generate warm white light sources (e.g., incandescent light bulbs) or cool white sources (e.g., typical fluorescent lamps).

Acknowledgements:

The research was originally published on July 3rd, 2018 in Optica Vol. 5, Issue 7, pp. 793-802 (2018), a publication of OSA, The Optical Society (doi:10.1364/OPTICA.5.000793).
The original paper can be downloaded at www.osapublishing.org/optica/viewmedia.cfm?uri=optica-5-7-793&seq=0

FEATURED

Epoxy Features Very Low Coefficient of Thermal Expansion

Epoxy Features Very Low Coefficient of Thermal Expansion Master Bond EP30LTE-2 has been developed for joining dissimilar substrates exposed to thermally or mechanically induced stresses. It can be used for sealing, coating and encapsulating, especially for small to medium sized castings where a very low coefficient of thermal expansion (CTE) is required. Read more »

FEATURED

New BJB LED Connector for Linear LED Modules: Book 21 Compliant

New BJB LED Connector for Linear LED Modules: Book 21 Compliant Lampholders were standard in older, traditional lighting systems. Modern LED fixtures that utilize non-replaceable LEDs create several assembly and field-replacement disadvantages. Zhaga Book 21 addresses these shortcomings by standardizing linear 'socketable' LED modules. In accordance with Book ... Read more »

FEATURED

EzyLED™ Now Stocked at Digi-Key

EzyLED™ Now Stocked at Digi-Key American Bright, a global LED lighting solutions manufacturer, announced a series of EzyLED 3030. American Bright's EzyLED™ is a proprietary LED device with a built-in IC. This patented design drastically reduces the need for additional circuitry and other on-board components making it the ideal ... Read more »

FEATURED

Cree Expands Design Possibilities for Architectural Lighting with the Worldwide Proven CLQ6A LED

Cree Expands Design Possibilities for Architectural Lighting with the Worldwide Proven CLQ6A LED These SMD LEDs are packaged in an industry standard PLCC8 package. These high performance 4 color SMT LEDs are designed to work in a wide range of applications. A wide viewing angle and high brightness make these LEDs suitable for signage applications. Read more »

FEATURED

Measuring the Oxygen Content of Blood with LEDs

Measuring the Oxygen Content of Blood with LEDs Pulse oximetry is a non-invasive method for determining haemoglobin (Hb) saturation through oxygen in the blood and heart frequency. It uses the fact that oxygen-rich and oxygen-poor haemoglobin absorb red and infrared light differently. In order to measure the oxygen content reliably, LEDs with ... Read more »

EDITORIAL

LpS/TiL 2019 - Europe's Foremost Lighting Conference Discussed Latest Lighting Trends

LpS/TiL 2019 - Europe's Foremost Lighting Conference Discussed Latest Lighting Trends Last week saw the co-hosted LED professional Symposium +Expo (LpS), Trends in Lighting Forum &Show (TiL) and for the first time the Digital Addressable Lighting Interface (DALI) Summit return to Bregenz, Austria. The three international conference and exhibition events were carefully curated to ... Read more »

EDITORIAL

The 2019 LpS & TiL Award Winners: Celebrating the Complete Spectrum of Light

The 2019 LpS & TiL Award Winners: Celebrating the Complete Spectrum of Light It is a great pleasure for the LpS and TiL organization committee to announce the award winners for 2019. For the second time in a row, after the traditional cruise on the lake from Bregenz to Lindau, the gala dinner at the Eilgut Halle has proven to being a great place for the LpS & TiL award ... Read more »

page_peel