LEDs | Solar Systems | Technologies | Jun 04, 2019

Organic Solar Cells and Light-emitting Diodes United

In the past 25 years of research on organic semiconductors, it was thought that organic solar cells and organic light-emitting diodes (OLEDs) could not be combined in a single device. A team of physicists headed by Prof. Koen Vandewal from Technische Universität Dresden has now succeeded in manufacturing an organic solar cell that simultaneously functions as an efficient OLED. Their findings were recently published in the internationally renowned journal Nature Materials.

Image: Current-voltage characteristic of an organic optoelectronic diode that absorbs ultraviolet and blue photons. Below the open-circuit voltage the diode functions as a solar cell and above as an OLED. The molecular structures show the charge carrier distribution in the organic semiconductors used: BF-DPB (electron donor) and B4PYMPM (electron acceptor). Visualisation by Dr. Reinhard Scholz and Matteo Cucchi.

_______________

A fundamental loss mechanism in semiconductors is the emission of light to maintain the thermodynamic balance between the material and its environment. Precisely this balance between light absorption and light emission in semiconductors is responsible for the fact that "an ideal solar cell is also an ideal light-emitting diode," says Johannes Benduhn, reiterating the basic assumption by the Organic Solar Cells (OSOL) group at the Institute of Applied Physics.

However, organic solar cells are subject to further loss mechanisms which have challenged this assumption until now. Instead of generating light, a large part of charge carriers recombines in the form of heat ("non-radiative"). This leads to a lower voltage and consequently a reduction of the power conversion efficiency, one of the main reasons why organic solar cells are not as efficient as established technologies you can currently find on rooftops. With the newly developed organic solar cells, the OSOL Group was able to keep these voltage losses comparatively low and thus pave the way for higher efficiency and completely new fields of application.

The international research team has succeeded in developing combinations of organic semiconductors based on electron acceptor and electron donor heterojunctions that function as both solar cells and LEDs. The results of this research significantly extend the current understanding of organic semiconductors and combine the physical description of organic solar cells and OLEDs for the first time.

These findings will contribute to the development of more energy-efficient OLEDs in smartphone displays or television screens. The newly developed photovoltaic devices can be used for the efficient conversion of ultraviolet and blue photons into electrical power, e.g. in indoor applications for the electrical supply of Internet-of-Things devices or as semi-transparent solar cells in glass facades.

The Organic Solar Cell (OSOL) Group at TU Dresden’s Institute of Applied Physics

The OSOL group is part of the Dresden Integrated Center for Applied Physics and Photonic Materials (IAPP) and the Institute of Applied Physics of TU Dresden.  The group was formerly headed by Prof. Koen Vandewal, who is now teaching and conducting research at the University of Hasselt in Belgium. One research focus of the OSOL group is photoactive organic semiconductors and their application in solar cells and photodetectors. They are currently conducting research on topics such as fundamental recombination processes, the development and synthesis of new materials, the design of new device architectures and the optimisation of organic solar cells. 

Original Publication:

Sascha Ullbrich, Johannes Benduhn, Xiangkun Jia, Vasileios C. Nikolis, Kristofer Tvingstedt, Fortunato Piersimoni, Steffen Roland, Yuan Liu, Jinhan Wu, Axel Fischer, Dieter Neher, Sebastian Reineke, Donato Spoltore and Koen Vandewal, Emissive and charge-generating donor–acceptor interfaces for organic optoelectronics with low voltage losses. Nature Materials 2019 (https://doi.org/10.1038/s41563-019-0324-5)

FEATURED

WHITE PAPER - Why an EMI Filter in Your Lighting Application is a Must

WHITE PAPER - Why an EMI Filter in Your Lighting Application is a Must From high voltage ballasts for fluorescent bulbs to LED accent lighting, advancements in lighting technologies for industrial and domestic markets have led to a surge in EMI concerns. Luckily, mitigating EMI early on, avoiding costly product redesigns and delays, can be as simple as ... Read more »

FEATURED

Precise Measurement of UV Light Sources for Disinfection

Precise Measurement of UV Light Sources for Disinfection UV radiation encompasses a very wide wavelength spectrum between 10 and 400 nm and is subdivided in ISO Standard 21348 into three ranges. The UVC range between 100 and 280nm is currently extremely relevant for air and water disinfection for combating COVID-19. Since the outbreak of the pandemic ... Read more »

EDITORIAL

Signify: New EU Ecodesign and Energy Labeling Regulations Are Met

Signify: New EU Ecodesign and Energy Labeling Regulations Are Met Signify (Euronext: LIGHT), confirms that its leading lighting portfolio will meet the new EU Ecodesign and Energy labeling regulations, which will affect all lighting products in the EU Member States from September 2021 onwards. The new regulations are representative of the enormous transition that ... Read more »

EDITORIAL

New DLC Report: Interoperability for Networked Lighting Controls

New DLC Report: Interoperability for Networked Lighting Controls Interoperability for Networked Lighting Controls explores the current interest in networked lighting controls (NLC) and the benefits various stakeholders can attain from championing interoperable systems. The report details three specific and actionable use cases and explains why interoperability ... Read more »

EDITORIAL

Tech-Talks BREGENZ - Prof. Ruairí O'Brien, Founder of Ruairí O'Brien Lighting Design

Tech-Talks BREGENZ - Prof. Ruairí O'Brien, Founder of Ruairí O'Brien Lighting Design Ruairí O'Brien, associate professor and head of the Architecture and Visual design department at the German University in Cairo and CEO of Ruairí O'Brien. Architektur. Licht Raumkunst, surprised and delighted the audience with his lecture at LpS 2016 when he talked about allowing darkness. He ... Read more »