IP, Reports & Roadmaps | Mar 30, 2006

New materials for high efficiency organic solid state lighting

A new organic molecule developed by PNNL (Pacific Northwest National Laboratory) scientists may significantly improve the efficiency of organic solid state lighting.

Direct conversion of electricity to light in “solid state” thin films of organic molecules occurs in organic light emitting devices which can be far more efficient than conventional “incandescent” light bulbs.

In an OLED, light emitting molecules harvest positive and negative charge carriers from oppositely charged electrodes to create excitons, which collapse to give light emission. By using organometallic phosphors, a photon can be emitted for every electron used so there is no wasted current.

But until now, no good host materials were available to transport the charge to blue phosphorescent light emitters. And, without an efficient blue component, it is not possible to generate the high quality white light required for indoor lighting. The PNNL team is solving this problem by linking small organic molecules together using inorganic “phosphine oxide” connecting units to make larger molecules that transport charge but do not interfere with the blue light emission process.

PNNL is a DOE Office of Science laboratory that solves complex problems in energy, national security, the environment and life sciences by advancing the understanding of physics, chemistry, biology and computation. PNNL employs 4,200 staff, has an annual budget of more than $725 million, and has been managed by Ohio-based Battelle since the lab's inception in 1965. 

In an OLED, light emitting molecules harvest positive and negative charge carriers from oppositely charged electrodes to create excitons, which collapse to give light emission. By using organometallic phosphors, a photon can be emitted for every electron used so there is no wasted current.

But until now, no good host materials were available to transport the charge to blue phosphorescent light emitters. And, without an efficient blue component, it is not possible to generate the high quality white light required for indoor lighting. The PNNL team is solving this problem by linking small organic molecules together using inorganic “phosphine oxide” connecting units to make larger molecules that transport charge but do not interfere with the blue light emission process.

PNNL is a DOE Office of Science laboratory that solves complex problems in energy, national security, the environment and life sciences by advancing the understanding of physics, chemistry, biology and computation. PNNL employs 4,200 staff, has an annual budget of more than $725 million, and has been managed by Ohio-based Battelle since the lab's inception in 1965.

 

Add comment

You can add a comment by filling out the form below. Plain text formatting. Comments are moderated.

Question: What is 1 + 3 ?
Your answer:
EDITORIAL

Selecting the UV LED Wavelength for Purification Applications

Selecting the UV LED Wavelength for Purification Applications Patrick Durand is the Worldwide Technical Director at Future Lighting Solutions (FLS) with over 15 years of experience in the solid state lighting industry. Patrick leads the FLS Technical Marketing teams and FLS laboratory teams located in multiple regions around the world with the objective of ... Read more »

EDITORIAL

Nichia Showcases LEDs with 'Light so Good'

Nichia Showcases LEDs with 'Light so Good' At Light + Building 2020 held in Frankfurt, Nichia – the leader in high-performance LED solutions – reveals it will present at least three complementary technologies to improve the delivery of light quality under an over-arching banner of 'Light so Good'. Read more »