Fundings & Projects | White Paper | Feb 27, 2013

NEWLED Research Project Led by the University of Dundee Aims to Revolutionize the Way the World Is Lit

The way the world is lit up could be revolutionised by a new European-wide research project being lead by the University of Dundee. The 11.8million Euros NEWLED project aims to develop a new generation of white light-emitting LED lights, which would be much more efficient than existing light bulbs.

Goals of the NEWLED project:
•    developing a new generation of energy efficient lighting
•    potential to massively reduce energy consumption and CO2 emissions

It is estimated that efficient white-light LEDs, if successfully developed and widely implemented, could have a massive effect on reducing global energy consumption and C02 emissions.

"Common lightbulbs have a pretty low efficiency rating and even the best current white LEDs in use only have an overall efficiency of around 25%," said Professor Edik Rafailov, NEWLED project leader based in the School of Engineering, Physics and Mathematics at Dundee.

"What we are aiming to develop is a significantly more efficient white LED, which would be around 50-60% efficient. If we can do that and it becomes widely adopted, then the effects on energy consumption would be enormous.

"It would also produce lighting over which much more control could be exercised in brightness and tone."

The effort to produce highly efficient white LEDs will see the project examine every stage of the LED fabrication process, from developing new knowledge on the control of semiconductor properties on a near-atomistic level to light mixing and heat management.

By examining the entire process, NEWLED aims to ensure that the new LEDs will be well adjusted to avoid compromising the achievements of the overall process and to ensure significant system and operating cost reduction.

NEWLED brings together academic and industrial partners and is funded through the European Union's FP7 programme.

FEATURED

Lumileds RGBW Module Achieves Breakthrough Flux and Color Control

Lumileds RGBW Module Achieves Breakthrough Flux and Color Control Lumileds, a global leader in innovative lighting solutions, today introduced the Luxeon MultiColor Module 2.5 W, a compact RGBW module that produces leading flux and achieves exact color points in architectural and general outdoor lighting applications. The 4-in-1 module simplifies system design by ... Read more »

FEATURED

American Bright introduces Smart RGB Addressable Rope Light Solutions

American Bright introduces Smart RGB Addressable Rope Light Solutions American Bright brings to the market their smart RGB+IC LED flexible rope lighting solutions allowing for boundless application opportunities. The smart LED light source includes the controller and RGB chip in one package allowing for each LED to be addressable. Additional adaptability is gained ... Read more »

FEATURED

Goniometer LGS 650: Higher Accuracy and Reproducibility

Goniometer LGS 650: Higher Accuracy and Reproducibility Goniophotometry is an absolute measuring procedure that can achieve a higher level of accuracy than sphere photometry. It does not require a luminous flux standard, but in contrast is often used for calibrating standard lamps for luminous flux. In addition to the luminous flux, photometric spatial ... Read more »

FEATURED

Cree® XLamp® High Current LED

Cree® XLamp® High Current LED The XLamp High Current LED Array family is optimized for best-in-class lumen output, efficacy and reliability at high drive currents. XLamp CMA LEDs share the same package design and LES sizes as Cree's industry-leading CXA2 Standard Density LEDs, enabling lighting manufacturers to address a range ... Read more »

EDITORIAL

High Conductive Foils Enabling Large Area Lighting

High Conductive Foils Enabling Large Area Lighting Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP as one of the leading partners for research and development for surface technologies and organic electronics and Sefar AG, a leading manufacturer of precision fabrics from monofilaments, developed a roll-to-roll ... Read more »

page_peel