Skip to content. | Skip to navigation

Personal tools

The Global
Information Hub for
Lighting Technologies
and Design

Sections
Home > Technologies > LEDs & OLEDs > Organic Electronics - How To Make Contact Between Carbon Compounds and Metals
Fundings + Projects | Feb 19, 2013

Organic Electronics - How To Make Contact Between Carbon Compounds and Metals

Organic electronics has already hit the market in smartphone displays and holds great promise for future applications like flexible electroluminescent foils (a potential replacement for conventional light bulbs) or solar cells that convert sunlight to electricity. A reoccurring problem in this technology is to establish good electrical contact between the active organic layer and metal electrodes. Organic molecules are frequently used also for this purpose. Until now, however, it was practically impossible to accurately predict which molecules performed well on the job. They basically had to be identified by trial-and-error. Now, an international team of scientists around Dr. Georg Heimel and Prof. Norbert Koch from the HZB and the Humboldt University Berlin has unraveled the mystery of what these molecules have in common. Their discovery enables more focused improvements to contact layers between metal electrodes and active materials in organic electronic devices.

"We have been working on this question for a number of years now and could at last come up with a conclusive picture using a combination of several experimental methods and theoretical calculations," Georg Heimel explains. The researchers systematically examined different types of molecules whose backbones consist of the same chain of fused aromatic carbon rings. They differed in just one little detail: the number of oxygen atoms projecting from the backbone. These modified molecules were placed on the typical contact metals gold, silver, and copper.

Using photoelectron spectroscopy (UPS and XPS) at HZB's own BESSY II synchrotron radiation source, the researchers were able to identify chemical bonds that formed between the metal surfaces and the molecules as well as to measure the energy levels of the conduction electrons. Colleagues from Germany's Tübingen University determined the exact distance between the molecules and the metal surfaces using x-ray standing wave measurements taken at the ESRF synchrotron radiation source in Grenoble, France.

These experiments showed that, upon contact between the oxygen atoms protruding from the backbone and several of the metals, the molecules' internal structure changed in such a way that they lost their semiconducting properties and instead adopted the metallic properties of the surface. Despite similar prerequisites, this effect was not observed for the "bare"-backbone molecule. From the observation which molecules underwent these kinds of drastic changes on what metal, the researchers could derive general guidelines. "At this point, we have a pretty good sense of how molecules ought to look like and what their properties should be if they are to be good mediators between active organic materials and metal contacts, or, as we like to call it, good at forming soft metallic contacts," says Heimel.

Experts from a number of other German universities and from research facilities in Suzhou (China), Iwate and Chiba (Japan), and ESRF (France) have also contributed substantially to this publication.

About Helmholtz-Zentrum Berlin:
The Helmholtz-Zentrum Berlin für Materialien und Energie (HZB) operates and develops large scale facilities for research with photons (synchrotron beams) and neutrons. The experimental facilities, some of which are unique, are used annually by more than 2,500 guest researchers from universities and other research organisations worldwide. Above all, HZB is known for the unique sample environments that can be created (high magnetic fields, low temperatures). HZB conducts materials research on themes that especially benefit from and are suited to large scale facilities. Research topics include magnetic materials and functional materials. In the research focus area of solar energy, the development of thin film solar cells is a priority, whilst chemical fuels from sunlight are also a vital research theme. HZB has approx.1,100 employees of whom some 800 work on the Lise-Meitner Campus in Wannsee and 300 on the Wilhelm-Conrad-Röntgen Campus in Adlershof.

FEATURED

deLIGHTed Talks: Good Light – Good Life in Wintertime, November 3, 2021

deLIGHTed Talks: Good Light – Good Life in Wintertime,  November 3, 2021 The Good Light Group, together with the Society for Light Treatment and Biological Rhythms (SLTBR), the Daylight Academy (DLA), the International Association of Lighting Designers (IALD), and Luger Research (LR), are organizing and presenting the “Good Light – Good Life” lectures. The webinar ... Read more »

FEATURED

NICHIA Unveils High Radiant Flux Density UV-C LED

NICHIA Unveils High Radiant Flux Density UV-C LED NICHIA, the world’s largest LED manufacturer and inventor of the high-brightness blue and white LED, has launched a high radiant flux density UV-C LED that can help target the inactivation and sterilization of various bacteria and viruses, including the new coronavirus. Read more »

FEATURED

Zhaga Summit: "Sustainable Lighting for Smart Cities and Buildings"

Zhaga Summit: "Sustainable Lighting for Smart Cities and Buildings" Sustainability is a major trend in the lighting industry, driven by regulations and requested by customers and society. The Zhaga Consortium is hosting this online event on 29 September, 15:00 – 18:00 CEST with speakers from national authorities, cities, industry association, lighting design and ... Read more »

FEATURED

Near-field Analysis of VCSEL Arrays

Near-field Analysis of VCSEL Arrays The VTC 4000 is Instrument System‘s VCSEL testing camera for comprehensive near-field analysis of complete VCSEL arrays. It enables the absolutely calibrated, traceable and polarization-controlled 2D characterization of all relevant parameters for every single emitter on the array. The VTC 4000, ... Read more »

page_peel