Technologies | Research News | Thermal Management | Jul 09, 2018

Intended for High-Performance Computer Chips - Maybe Also Useful for LEDs

The inner workings of high-power electronic devices must remain cool to operate reliably. High internal temperatures can make programs run slower, freeze or shut down. Researchers at the University of Illinois at Urbana-Champaign and The University of Texas, Dallas have collaborated to optimize the crystal-growing process of boron arsenide – a material that has excellent thermal properties and can effectively dissipate the heat generated in electronic devices.

The results of the study, published in the journal Science, mark the first realization of previously predicted class of ultrahigh thermal conductivity materials. Boron arsenide is not a naturally occurring material, so scientists must synthesize it in the lab, the researchers said. It also needs to have a very specific structure and low defect density for it to have peak thermal conductivity, so that its growth happens in a very controlled way.

“We studied the structural defects and measured the thermal conductivity of the boron arsenide crystals produced at UT Dallas,” said co-author David Cahill, a professor and head of the department of materials science and engineering at Illinois. “Our experiments also show that the original theory is incomplete and will need to be refined to fully understand the high thermal conductivity.”

Most of today’s high-performance computer chips and high-power electronic devices are made of silicon, a crystalline semiconducting material that does an adequate job of dissipating heat. But in combination with other cooling technology incorporated into devices, silicon can handle only so much, the team said.

Diamond has the highest known thermal conductivity – about 15 times that of silicon – but there are problems when it comes to using it for thermal management of electronics.

“Although diamond has been incorporated occasionally in demanding heat-dissipation applications, the cost of natural diamonds and structural defects in manmade diamond films make the material impractical for widespread use in electronics,” said co-author Bing Lv, a physics professor at UT Dallas.

“The boron arsenide crystals were synthesized using a technique called chemical vapor transport,” said Illinois postdoctoral researcher Qiye Zheng. “Elemental boron and arsenic are combined while in the vapor phase and then cool and condense into small crystals. We combined extensive materials characterization and trial-and-error synthesis to find the conditions that produce crystals of high enough quality.”

The Illinois team used electron microscopy and a technique called time-domain thermoreflectance to determine if the lab-grown crystals were free of the types of defects that cause a reduction in thermal conductivity.

“We measured dozens of the boron arsenide crystals produced in this study and found that the thermal conductivity of the material can be three times higher than that of best materials being used as heat spreaders today,” Zheng said.

The next step in the work will be to try other processes to improve the growth and properties of this material for large-scale applications, the researchers said.

Acknowledgements and References:

The Office of Naval Research and the Air Force Office of Scientific Research supported this study.
To reach David Cahill, call 217-333-6753; email d-cahill@illinois.
To reach Bing Lv, email blv@utdallas.edu.
The paper “High thermal conductivity in cubic boron arsenide crystals” is available online and from the U. of I. News Bureau. DOI: 10.1126/science.aat8982

FEATURED

WHITE PAPER - Why an EMI Filter in Your Lighting Application is a Must

WHITE PAPER - Why an EMI Filter in Your Lighting Application is a Must From high voltage ballasts for fluorescent bulbs to LED accent lighting, advancements in lighting technologies for industrial and domestic markets have led to a surge in EMI concerns. Luckily, mitigating EMI early on, avoiding costly product redesigns and delays, can be as simple as ... Read more »

FEATURED

Precise Measurement of UV Light Sources for Disinfection

Precise Measurement of UV Light Sources for Disinfection UV radiation encompasses a very wide wavelength spectrum between 10 and 400 nm and is subdivided in ISO Standard 21348 into three ranges. The UVC range between 100 and 280nm is currently extremely relevant for air and water disinfection for combating COVID-19. Since the outbreak of the pandemic ... Read more »

EDITORIAL

Signify: New EU Ecodesign and Energy Labeling Regulations Are Met

Signify: New EU Ecodesign and Energy Labeling Regulations Are Met Signify (Euronext: LIGHT), confirms that its leading lighting portfolio will meet the new EU Ecodesign and Energy labeling regulations, which will affect all lighting products in the EU Member States from September 2021 onwards. The new regulations are representative of the enormous transition that ... Read more »

EDITORIAL

New DLC Report: Interoperability for Networked Lighting Controls

New DLC Report: Interoperability for Networked Lighting Controls Interoperability for Networked Lighting Controls explores the current interest in networked lighting controls (NLC) and the benefits various stakeholders can attain from championing interoperable systems. The report details three specific and actionable use cases and explains why interoperability ... Read more »

EDITORIAL

Tech-Talks BREGENZ - Prof. Ruairí O'Brien, Founder of Ruairí O'Brien Lighting Design

Tech-Talks BREGENZ - Prof. Ruairí O'Brien, Founder of Ruairí O'Brien Lighting Design Ruairí O'Brien, associate professor and head of the Architecture and Visual design department at the German University in Cairo and CEO of Ruairí O'Brien. Architektur. Licht Raumkunst, surprised and delighted the audience with his lecture at LpS 2016 when he talked about allowing darkness. He ... Read more »

EDITORIAL

See and Be Seen: New LED from Osram Ensures Optimal Visibility in Dense Fog

See and Be Seen: New LED from Osram Ensures Optimal Visibility in Dense Fog Dense fog and poor visibility repeatedly lead to serious rear-end collisions. In poor weather conditions, good visibility through a bright rear fog light is very important. The Synios P2720 CR from Osram provides many benefits to manufacturers of rear combination lamps, such as enabling compact ... Read more »