Technologies | Research News | Thermal Management | Jul 09, 2018

Intended for High-Performance Computer Chips - Maybe Also Useful for LEDs

The inner workings of high-power electronic devices must remain cool to operate reliably. High internal temperatures can make programs run slower, freeze or shut down. Researchers at the University of Illinois at Urbana-Champaign and The University of Texas, Dallas have collaborated to optimize the crystal-growing process of boron arsenide – a material that has excellent thermal properties and can effectively dissipate the heat generated in electronic devices.

The results of the study, published in the journal Science, mark the first realization of previously predicted class of ultrahigh thermal conductivity materials. Boron arsenide is not a naturally occurring material, so scientists must synthesize it in the lab, the researchers said. It also needs to have a very specific structure and low defect density for it to have peak thermal conductivity, so that its growth happens in a very controlled way.

“We studied the structural defects and measured the thermal conductivity of the boron arsenide crystals produced at UT Dallas,” said co-author David Cahill, a professor and head of the department of materials science and engineering at Illinois. “Our experiments also show that the original theory is incomplete and will need to be refined to fully understand the high thermal conductivity.”

Most of today’s high-performance computer chips and high-power electronic devices are made of silicon, a crystalline semiconducting material that does an adequate job of dissipating heat. But in combination with other cooling technology incorporated into devices, silicon can handle only so much, the team said.

Diamond has the highest known thermal conductivity – about 15 times that of silicon – but there are problems when it comes to using it for thermal management of electronics.

“Although diamond has been incorporated occasionally in demanding heat-dissipation applications, the cost of natural diamonds and structural defects in manmade diamond films make the material impractical for widespread use in electronics,” said co-author Bing Lv, a physics professor at UT Dallas.

“The boron arsenide crystals were synthesized using a technique called chemical vapor transport,” said Illinois postdoctoral researcher Qiye Zheng. “Elemental boron and arsenic are combined while in the vapor phase and then cool and condense into small crystals. We combined extensive materials characterization and trial-and-error synthesis to find the conditions that produce crystals of high enough quality.”

The Illinois team used electron microscopy and a technique called time-domain thermoreflectance to determine if the lab-grown crystals were free of the types of defects that cause a reduction in thermal conductivity.

“We measured dozens of the boron arsenide crystals produced in this study and found that the thermal conductivity of the material can be three times higher than that of best materials being used as heat spreaders today,” Zheng said.

The next step in the work will be to try other processes to improve the growth and properties of this material for large-scale applications, the researchers said.

Acknowledgements and References:

The Office of Naval Research and the Air Force Office of Scientific Research supported this study.
To reach David Cahill, call 217-333-6753; email d-cahill@illinois.
To reach Bing Lv, email blv@utdallas.edu.
The paper “High thermal conductivity in cubic boron arsenide crystals” is available online and from the U. of I. News Bureau. DOI: 10.1126/science.aat8982

FEATURED

Epoxy Features Very Low Coefficient of Thermal Expansion

Epoxy Features Very Low Coefficient of Thermal Expansion Master Bond EP30LTE-2 has been developed for joining dissimilar substrates exposed to thermally or mechanically induced stresses. It can be used for sealing, coating and encapsulating, especially for small to medium sized castings where a very low coefficient of thermal expansion (CTE) is required. Read more »

FEATURED

New BJB LED Connector for Linear LED Modules: Book 21 Compliant

New BJB LED Connector for Linear LED Modules: Book 21 Compliant Lampholders were standard in older, traditional lighting systems. Modern LED fixtures that utilize non-replaceable LEDs create several assembly and field-replacement disadvantages. Zhaga Book 21 addresses these shortcomings by standardizing linear 'socketable' LED modules. In accordance with Book ... Read more »

FEATURED

EzyLED™ Now Stocked at Digi-Key

EzyLED™ Now Stocked at Digi-Key American Bright, a global LED lighting solutions manufacturer, announced a series of EzyLED 3030. American Bright's EzyLED™ is a proprietary LED device with a built-in IC. This patented design drastically reduces the need for additional circuitry and other on-board components making it the ideal ... Read more »

FEATURED

Cree Expands Design Possibilities for Architectural Lighting with the Worldwide Proven CLQ6A LED

Cree Expands Design Possibilities for Architectural Lighting with the Worldwide Proven CLQ6A LED These SMD LEDs are packaged in an industry standard PLCC8 package. These high performance 4 color SMT LEDs are designed to work in a wide range of applications. A wide viewing angle and high brightness make these LEDs suitable for signage applications. Read more »

FEATURED

Measuring the Oxygen Content of Blood with LEDs

Measuring the Oxygen Content of Blood with LEDs Pulse oximetry is a non-invasive method for determining haemoglobin (Hb) saturation through oxygen in the blood and heart frequency. It uses the fact that oxygen-rich and oxygen-poor haemoglobin absorb red and infrared light differently. In order to measure the oxygen content reliably, LEDs with ... Read more »

EDITORIAL

LpS/TiL 2019 - Europe's Foremost Lighting Conference Discussed Latest Lighting Trends

LpS/TiL 2019 - Europe's Foremost Lighting Conference Discussed Latest Lighting Trends Last week saw the co-hosted LED professional Symposium +Expo (LpS), Trends in Lighting Forum &Show (TiL) and for the first time the Digital Addressable Lighting Interface (DALI) Summit return to Bregenz, Austria. The three international conference and exhibition events were carefully curated to ... Read more »

EDITORIAL

The 2019 LpS & TiL Award Winners: Celebrating the Complete Spectrum of Light

The 2019 LpS & TiL Award Winners: Celebrating the Complete Spectrum of Light It is a great pleasure for the LpS and TiL organization committee to announce the award winners for 2019. For the second time in a row, after the traditional cruise on the lake from Bregenz to Lindau, the gala dinner at the Eilgut Halle has proven to being a great place for the LpS & TiL award ... Read more »

page_peel