Technology | Jul 05, 2012

New Thermal Management Product Manufacturing Process Brightens Future of LED Lighting

A new technique for making brighter, longer-lasting LEDs (Light Emitting Diodes) has taken the first leap from research laboratory towards the three-billion-US-dollar global market in high-powered lighting. The new manufacturing system, called liquid forging, dramatically improves the way tiny electronic devices keep cool and looks set to revolutionize production of next generation LEDs.

Many electronic parts need heat sinks to prevent burnout. Effective cooling of high-powered LEDs for homes, offices and streetlights is a serious engineering challenge for a global market expanding 10% annually. If heat is allowed to build, it can damage parts causing them to dim and lose efficiency. The award-winning liquid-forging method developed by A*STAR’s Singapore Institute of Manufacturing Technology (SIMTech) provides a solution.   

“Liquid forging is a hybrid between forging and casting,” says Chua Beng Wah, the lead researcher on the SIMTech project. “It is especially useful if you need to manufacture lighter components with intricate features like heat sinks using wrought aluminum alloys.”

The process provides a significant additional benefit for thermal engineers: the thermal conductivity of liquid-forged products beats conventional techniques such as casting by a factor of two. “The method is ideally suited to heat sink design,” adds Beng Wah.

In April this year, A*STAR’s technology transfer arm, Exploit Technologies Pte Ltd (ETPL), licensed the patented technology to a leading LED thermal management firm. The agreement allows the firm to build lightweight, high-performance LED heat sinks using the liquid-forging process.

Liquid forging was developed by a SIMTech team led by John Yong. In 2008, Yong’s team won Singapore’s highest honor for exceptional research, the National Technology Award, for their discovery.

The process is highly scalable allowing complex parts — using composite materials such as copper and aluminum — to be created in a single step. This development means heat sinks and light fixtures can be formed as one piece significantly minimizing assembly costs. The system also allows more elaborate designs like complex arrays of pins and fins that increase surface area for improved heat dissipation. Furthermore, the final product requires less machining, partly because the process uses raw materials more efficiently. The resultant heat sink can be anodized, improving thermal performance by an additional 10–15%.

But liquid forging is not restricted to cooling LEDs. ETPL’s Chief Executive Officer Philip Lim explains, “Liquid forging is a low-cost system with the potential to compete with traditional manufacturing processes in the biomedical, aerospace and automotive industries. Amongst other things, this technique could be used to make alloy wheel trims, electronic casings or pistons.”

With products predicted to be on the shelves as early as 2013, the future for this new technology seems bright.

About the A*STAR Singapore Institute of Manufacturing Technology:
The A*STAR Singapore Institute of Manufacturing Technology (SIMTech) develops high-value manufacturing technology and scientific expertise to support and build Singapore’s world-class manufacturing industry. SIMTech has completed more than 900 projects with over 500 companies in industries such as electronics, semiconductors, precision engineering, medical technology, aerospace, automotive, marine and logistics.

About Exploit Technologies Pte Ltd:
Exploit Technologies Pte Ltd (ETPL) is the technology transfer arm of the Agency for Science, Technology and Research (A*STAR). Its mission is to support A*STAR in transforming Singapore’s economy by commercializing research and development. Exploit Technologies turns A*STAR’s inventions into marketable products or processes. Through licensing deals and spin-offs with industry partners, Exploit Technologies is a key driver of technology transfer in Singapore. It actively engages industry leaders and players to commercialize A*STAR’s technologies and capabilities, bridging the gap from Mind to Market.

FEATURED

A Cree® J Series® 2835 LED for Every Application on Your List

A Cree® J Series® 2835 LED for Every Application on Your List Cree's J Series 2835 LEDs combine high efficacy and lower power consumption. J Series 2835 LEDs are optimized for low density applications requiring high efficacy and smooth appearance, such as downlights, troffers, and panel lights. Thirteen models of J Series 2835 LEDs are available in 2200 K - ... Read more »

EDITORIAL

Porotech Launches Groundbreaking Micro-LED Product

Porotech Launches Groundbreaking Micro-LED Product University of Cambridge spin-out Porotech has today announced the launch of its first product based on its breakthrough gallium nitride (GaN) production technique that is set to transform the electronics industry. The company has launched the world's first commercial native red LED epiwafer for ... Read more »

EDITORIAL

Luminus Releases XFM-5050 UVC LEDs and Opens New Possibilities for Disinfection and Sterilization

Luminus Releases XFM-5050 UVC LEDs and Opens New Possibilities for Disinfection and Sterilization Luminus Devices today introduced its new XFM-5050 UVC LED series that sets new benchmarks for output, and lowers the $/mW another 20% compared to previous Luminus UVC LEDs. The series offers 2, 3, and 4 chip options with nominal power levels of 120, 180, and 240 mW of disinfection power. Read more »

EDITORIAL

Transform Your Space with Thorn's New VCT Technology

Transform Your Space with Thorn's New VCT Technology VCT technology (Variable Color Temperature) brings a new dynamic to your space. It is now possible to set dedicated color temperatures for specific areas of your space, ranging from 2700 K to 6500 K. The VCT enables you to manually and automatically adjust light levels and to set pre-defined ... Read more »