Resources | Reports | Discussions | Health & Environment | Jul 01, 2016

Lighting Research Center Issues Response to AMA Report on LED Lighting

Recently the American Medical Association (AMA) has produced a document cautioning the public about In-Ga-N based LEDs used as sources of illumination. The Lighting Research Center (LRC) at Rensselaer Polytechnic Institute has received a large number of requests for an opinion. Professors Mark Rea and Mariana Figueiro of the LRC have prepared a response.

Key points include:
•         Predictions of health consequences from light exposure depend upon an accurate characterization of the physical stimulus as well as the biological response to that stimulus. Without fully defining both the stimulus and the response, nothing meaningful can be stated about the health effects of any light source
•         Notwithstanding certain sub-populations that deserve special attention, blue light hazard from In-Ga-N LEDs is probably not a concern to the majority of the population in most lighting applications due to human’s natural photophobic response
•         Both disability glare and discomfort glare are mostly determined by the amount and distribution of light entering the eye, not its spectral content
•         In-Ga-N LED sources dominated by short wavelengths have greater potential for suppressing the hormone melatonin at night than sodium-based sources commonly used outdoors. However, the amount and the duration of exposure need to be specified before it can be stated that In-Ga-N LED sources affect melatonin suppression at night
•         Until more is known about the effects of long-wavelength light exposure (amount, spectrum, duration) on circadian disruption, it is inappropriate to single out short-wavelength radiation from In-Ga-N LED sources as a causative factor in modern maladies
•         Correlated color temperature (CCT) is not appropriate for characterizing the potential impacts of a light source on human health because the CCT metric is independent of nearly all of the important factors associated with light exposure, namely, its amount, duration, and timing

The original AMA document, " Human and Environmental Effects of Light Emitting Diode (LED) Community Lighting", can be read downloding the pdf at http://www.ama-assn.org/resources/doc/csaph/x-pub/a16-csaph2.pdf
Professors Mark Rea and Mariana Figueiro's response to this statement is available at http://www.lrc.rpi.edu/resources/newsroom/AMA.pdf

The LRC’s response attempts to draw attention to the problem of misapplying short-hand metrics to the topic of light and health and also provides the reader with a wealth of references that should inform rational discourse.

About LRC:

The Lighting Research Center (LRC) at Rensselaer Polytechnic Institute is the world's leading center for lighting research and education. Established in 1988 by the New York State Energy Research and Development Authority (NYSERDA), the LRC has been pioneering research in energy and the environment, light and health, transportation lighting and safety, and solid-state lighting for more than 25 years. In 1990, the LRC became the first university research center to offer graduate degrees in lighting and today the LRC offers both a M.S. in lighting as well as a Ph.D. to educate future leaders in lighting. Internationally recognized as the preeminent source for objective information on all aspects of lighting technology and application, LRC researchers conduct independent, third-party testing of lighting products in the LRC's state of the art photometric laboratories, the only university lighting laboratories accredited by the National Voluntary Laboratory Accreditation Program (NVLAP Lab Code: 200480-0). LRC researchers are continuously working to develop new and better ways to measure the value of light and lighting systems, such as the effect of light on human health. The LRC believes that by accurately matching the lighting technology and application to the needs of the end user, it is possible to design lighting that benefits both society and the environment.

FEATURED

A New Fixing Technology for Optics Brings Additional Time Savings in Luminaire Assembly

A New Fixing Technology for Optics Brings Additional Time Savings in Luminaire Assembly Today it is often the fixing technology which decides how efficiently an LED luminaire can be produced. Innovative assembly procedures help in production by simplifying and shortening processes or eliminating them completely. Just a few minutes are often enough to make a manufacturer more ... Read more »

EDITORIAL

High Conductive Foils Enabling Large Area Lighting

High Conductive Foils Enabling Large Area Lighting Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP as one of the leading partners for research and development for surface technologies and organic electronics and Sefar AG, a leading manufacturer of precision fabrics from monofilaments, developed a roll-to-roll ... Read more »

page_peel