Products, Materials & Tools

Recipients of the Nobel Prize in Physics Support the Development of Deep-UV LEDs

The first presentation of the new deep-UV LEDs that were supported by Profs. Isamu Akasaki, Hiroshi Amano, and Shuji Nakamura, has been at electronica 2014 in Munich Profs. Isamu Akasaki, Hiroshi Amano, and Shuji Nakamura received the Nobel Prize in physics in mid-December 2014 for their breakthrough that enabled the development of blue LEDs. In particular, Professor Amano and his team at Nagoya University have worked intensively over the past few years on further development of these semiconductor-based lamps. They provided consulting services to the Japanese firm of Nikkiso Co. Ltd. in the design of the first deep-ultraviolet light-emitting diodes (DUV-LEDs). These novel light sources cover wavelengths from 255 to 350 nm which were previously impossible to generate with LEDs. Fields of application include biotechnology, medicine, and environmental and industrial technology. The rights for marketing activities in Europe are held by Nikkiso subsidiary Lewa GmbH, who presented the technology for the first time in Europe together with Nikkiso at electronica 2014 in Munich. Read more »

White Paper | Technology | Nov 21, 2014

Thermoresponsive PDLC Coating for Smart CCT-Tunable LED Applications

Thermoresponsive scattering coating for smart CCT-changing white LEDs: a) basic working mechanism; b) demonstrator using coated (bottom) and uncoated (top) warm white LEDs operating at a low current (~20 mA/LED - top picture) and at a high current (~80 mA/LED - the bottom); c) associated CCT vs. current diagram When the 2014 Nobel Prize in physics was awarded this October to three Japanese-born scientists for the invention of blue light emitting diodes (LEDs), the prize committee declared LED lamps would light the 21st century. Now researchers from the Netherlands propose a novel way to ensure the lights of the future not only are energy efficient but also emit a cozy warmth. Cornelissen and his colleagues from the Eindhoven University of Technology, Netherlands describe their new LEDs in a paper published in The Optical Society's (OSA) open-access journal Optics Express. Read more »

Technology | Nov 06, 2014

Osram Reports Record Figures for Green InGaN-Based and Conversion LEDs

LEDs show a significant efficacy drop in the green spectral range – an effect known as the “green gap” phenomenon The “Hi-Q-LED” project funded by Germany’s Federal Ministry of Education and Research (BMBF) has made pioneering advances with green LEDs, greatly diminishing what is known as the “green gap” phenomenon – the significant drop in efficacy in the green spectral range. The result is a green-emitting LED based on indium gallium nitride (InGaN) semiconductors which achieves a record efficacy of 147 lumens per watt (lm/W) at a wavelength of 530 nanometers (nm) and a spectral width of 35 nm. In addition, another green LED developed by combining a blue chip with a phosphor converter has achieved a record-breaking efficacy exceeding 200 lm/W. Read more »

Fundings & Projects | Nov 03, 2014

Light in New Shape - BMBF-Funded Joint Project R2D2

The reserach progresses of the last five years have proven the technical feasibility of transparent light sources with very low energy consumption, which furthermore can be applied to flexible and pliable substrates The research progresses of the last five years have proven the technical feasibility of the vision of a transparent and flexible light sources with very low energy consumption in the form of first demonstrators. Now the BMBF-funded joint project R2D2 will start in November 2014 aiming at the investigation of production-related processes and technologies for the manufacturing of flexible OLED. Read more »

Technology | Oct 07, 2014

And the Nobel Price 2014 Goes To ... The Inventors of the Blue LED

The blue LEDs, invented by the winners, are the basis for today's white LEDs like - following the latest trend - these chip-LEDs The Royal Swedish Academy of Sciences has decided to award the Nobel Prize in Physics for 2014 to Isamu Akasaki from the Meijo University, Nagoya, Japan and Nagoya University, Japan, to Hiroshi Amano from the Nagoya University, Japan and to Shuji Nakamura from the University of California, Santa Barbara, CA, USA for the invention of efficient blue light-emitting diodes which has enabled bright and energy-saving white light sources. Read more »

Technology | Sep 25, 2014

Nanotechnology May Lead to Better, Cheaper LEDs

(a) Princeton researchers have used their expertise in nanotechnology to develop an economical new system that markedly increases the brightness, efficiency and clarity of LEDs, which are widely used in smartphones and other electronics. The illustration demonstrates how a conventional LED's structure traps most of the light generated inside the device; the new system, called PlaCSH, guides the light out of the LED. (lllustration courtesy of Stephen Chou et al.) (b) PlaCSH has a layer of light-emitting material about 100 nanometers thick that is placed inside a cavity with one surface made of a thin metal film (shown at left.) The key part of the device is a metal mesh (center) with incredibly small dimensions: it is 15 nanometers thick; and each wire is about 20 nanometers in width and 200 nanometers apart from center to center. An image of the experimental LED is shown at right. (Images courtesy of Stephen Chou et al.) Princeton University researchers have developed a new method to increase the brightness, efficiency and clarity of LEDs, which are widely used on smartphones and portable electronics as well as becoming increasingly common in lighting. Using a new nanoscale structure, the researchers, led by electrical engineering professor Stephen Chou, increased the brightness and efficiency of LEDs made of organic materials (flexible carbon-based sheets) by 57 percent. The researchers also report their method should yield similar improvements in LEDs made in inorganic (silicon-based) materials used most commonly today. Read more »

Technology | Sep 18, 2014

LpR 44 Article: Discomfort Glare Perception of Non-Uniform Light Sources in an Office Setting

Test setup of the different regions and luminance patterns under test LED based luminaires with different luminance patterns and recently with increasingly non-uniform luminance patterns are becoming mainstream. This trend makes discomfort due to glare an important topic. Based on an office setting and the comparison of results from three different regions, L. M. Geerdinck, J. R. Van Gheluwe and M.C.J.M. Vissenberg from Philips Research have reviewed the currently used formulae to predict discomfort glare to ascertain if they are still valid. Read more »

Fundings & Projects | Sep 17, 2014

Printing Process of Metal Contacts for Reliable Contacting of Flexible OLEDs and Other Devices

Fraunhofer FEP works on cost-effective system solutions for flexible devices and presents results at Plastic Electronics 2014 A significant growth is predicted for the market of flexible devices. The topic “Wearables”, namely intelligent, wearable systems with several useful and funny features is currently one of the major discussion topics. To enjoy more comfort, exceptional designs and higher functionality manufacturers and users ask for flexible electronic devices, like displays, lighting elements or circuit boards. Read more »

White Paper | Technology | Aug 28, 2014

Osram Opto Demonstrates "3D nano LEDs" for White Light and Sees Series Maturity in Coming Years

Osram researchers make a 3D nano LED for white light shine on the wafer using two tiny, energized needles.The needles are pressed onto the contact surfaces of the chips, and the distance between the contact points corresponds approximately to the thickness of three sheets of stacked writing paper By making use of nanotechnology, Osram hopes to produce significantly more LED chips with its existing production plant. Osram researchers have for the first time succeeded in manufacturing a so-called "3D nano LED" for white light. The productivity boost is possible due to the special surface characteristics of the LED chip – in contrast to today's standard models, this is not smooth but consists of many adjacent, microscopically small columns with a three-dimensional structure, thus increasing its light-generating area. The new technology is expected to achieve series maturity in coming years, and Osram would then be one of the first companies to use this technology. Read more »

Technology | Jul 03, 2014

Significant Technical Progress - BluGlass Demonstrates Best Ever RPCVD (p-GaN) Light Output

Demonstration of light emission at 473nm, with full width half maximum of 22nm, from a RPCVD p-GaN layer grown on a MOCVD partial structure Australian Cleantech innovator, BluGlass Limited, has announced today that it has been successful in demonstrating the best ever p-GaN light output using its propriety technology, Remote Plasma Chemical Vapour Deposition (RPCVD) on an MOCVD partial LED structure. This result is greater than a 10 fold improvement in LED efficiency over the first p-GaN demonstration data published by the company in December 2012, when the same measuring methodology is applied. This has been achieved by making significant improvements in addressing the ‘interface challenge’, a key technical hurdle that has been limiting the p-GaN performance demonstration in the past. Read more »

Technology | Apr 14, 2014

Developing Phosphor-Free White Light from Nanopyramid LEDs

Left: Fabrication schematic for phosphor-free nanopyramid LEDs by nanospherical-lens photolithography. Right: (a) Room-temperature photoluminescence spectra of nanopyramid LEDs with MQWs grown at different temperatures, along with reference structure grown on planar template. (b) Spectrum of ‘white LED’ (blue LED with yellow phosphors). (c) Electroluminescence spectrum of nanopyramid LEDs at 20mA; inset shows corresponding optical microphotograph Researchers in China have used nitride semiconductor nanopyramid structures to create light-emitting diodes (LEDs) with spectra that are similar to those provided by ‘white light’ LEDs with yellow phosphors [Kui Wu et al, J. Appl. Phys., vol115, p123101, 2014]. The researchers are at the Chinese Academy of Sciences’s institutes of Semiconductors and Mechanics, and Tsinghua University. A similar CAS/Tsinghua team previously reported such devices, using a polystyrene nanosphere mask to make holes for selective-area growth of nanopyramids. Read more »

Technology | Mar 28, 2014

Osram To Demonstrate The World's Most Efficient LED Replacement Tube at Light+Building

Osram's record-breaking light source was developed by the central research department together with the optical semiconductor and lamp business units An Osram research team has succeeded in constructing the most efficient LED lamp in the world. The lamp in tubular form consumes only half the power of currently common fluorescent and LED tubes, and also achieves significantly superior colour rendering. Read more »

Technology | Mar 26, 2014

Cree Continues to Push the Boundaries of LED Performance by Breaking 300 Lumens-Per-Watt Barrier

According to Cree, the efficacy of the CCT 5150 K LED was measured applying a current of 350 mA at standard room temperature Cree, Inc. records another significant LED milestone with the demonstration of 303 lumens per watt from a white high power LED. Reaching the landmark achievement much faster than previously believed possible, this result surpasses Cree’s previous R&D industry best of 276 lumens per watt announced just over a year ago. Read more »

Technology | Mar 19, 2014

New Technique Makes LEDs Brighter, More Resilient

By coating polar gallium nitride with phosphonic groups, the researchers increased luminescence without increasing energy input (Image Credits: Stewart Wilkins) Researchers from North Carolina State University have developed a new processing technique that makes light emitting diodes (LEDs) brighter and more resilient by coating the semiconductor material gallium nitride (GaN) with a layer of phosphorus-derived acid. Read more »

White Paper | Technology | Mar 13, 2014

Quantum Materials Secures Los Alamos Thick-Shell Quantum Dot Technology to Increase Brightness

Quantum materials optioning Thick-Shell 'Giant' Quantum Dot patented technology promises improvement in solid-state brightness over conventional nanocrystal quantum dots (QD) Quantum Materials Corporation and Los Alamos National Laboratory's today announce Quantum Materials optioning Thick-Shell 'Giant' Quantum Dot patented technology with the potential of 10 to 100-fold improvement in solid-state brightness over conventional nanocrystal quantum dots (QD). High brightness leads to efficient use of materials and increased performance in electronic displays and solid state (LED) lighting. Read more »


Nationstar Overall Layout in UV LED Market

Nationstar Overall Layout in UV LED Market In August 2018, Nationstar set up the Non-visual Light Source Business Division, focusing on IR LED, UV LED, animal and plant lighting. Nationstar has been fully laid out on UVA/UVB/UVC. Since 2016, Nationstar has launched near-ultraviolet LED, deep-ultraviolet LED and modules, with wide wavelength ... Read more »


High Conductive Foils Enabling Large Area Lighting

High Conductive Foils Enabling Large Area Lighting Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP as one of the leading partners for research and development for surface technologies and organic electronics and Sefar AG, a leading manufacturer of precision fabrics from monofilaments, developed a roll-to-roll ... Read more »